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Abstract

The endogeneity of network formation has been a major obstacle to the study of
peer influence. This paper proposes a causal identification solution in the potential
outcome framework. Combining results from multiple causal inference and statistical
network analysis, I show that confounding can be addressed by inferring propensity
scores of network link formation from the adjacency matrix. Unlike existing econo-
metric solutions, my identification strategy does not rely on any parametric modelling
of the data-generating process. As an application, I estimate the effect of high school
friendships on bachelor’s degree attainment. While previous literature finds that expo-
sure to more high-achieving boys makes girls less likely to obtain a bachelor’s degree, I
show that if the girls consider the boys as friends, their interactions induce a positive
impact instead. Since friendship endogeneity has been addressed, the estimated effect
is causal.
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1 Introduction

Interest in understanding the impact of peer influence within economic and social networks

has been growing rapidly in the economics literature, with an increasing emphasis on estab-

lishing causality. Knowing how connected agents are affected by each other is important,

as welfare can be improved through cultivating certain relationships while discouraging oth-

ers. However, due to the difficulties in addressing network endogeneity, the causal impact

of many important types of relationships, such as friendships, buyer-supplier networks and

banking networks, remain understudied.

The difficulty in establishing causal identification partly comes from the lack of a causal

framework where treatments and potential outcomes are explicitly defined. In this paper,

I propose to treat each potential relationship as a unique treatment. In other words, the

existence of each network link is the subject of manipulation or intervention in a hypotheti-

cal experiment where we could assign network links at will.1 This view of what constitutes

a treatment contrasts with the existing literature on peer effects, where the treatment is

implicitly assumed to be some summary statistics of the entire network, such as the share of

one’s connected network nodes with certain characteristics.2 I call the effect of relationships

the linking effect, emphasising the fact that the treatment is the assignment of links. Ex-

plicitly viewing every pairwise relationship as a treatment opens the door to building upon

existing causal inference tools for the study of the linking effect. In particular, due to the

multiplicity of possible relationships for any network node, we are able to embed the analysis

of the network linking effect in the multiple causal inference framework.

This newly discovered connection between these two previously disassociated literature

turns out to be highly consequential for the causal identification of the linking effect in en-

dogenous networks. By combining a recent finding in the multiple causal inference literature

(Wang and Blei, 2019a) and theoretical results in the statistical network analysis literature,

I show that the linking effect can be identified through an unconfoundedness condition that

holds under two assumptions. The first assumption is the “doubly individualistic assignment

1In a network with N nodes, each node will have N − 1 potential network links to form. In other words,
the number of potential treatments is N − 1 for each node.

2E.g. the sahre of high ability roommates in Sacerdote (2001).
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mechanism” assumption, which states that there exist some random variables such that af-

ter conditioning on these random variables, the distribution of network links is conditionally

independent. This assumption imposes restrictions on how the network data is generated,

without any restrictions on how it is network formation is related to the outcome of interest.

It essentially rules out the case where a link directly affects the formation of another link,

such as in a marriage network where being married to one person rules out marriage links to

all the other people. The second assumption is the “no single-link confounder” assumption.

It requires that any variable that affects the outcome variable must affect the formation of

more than one link out of the N − 1 potential links. This assumption is likely to hold in

networks of non-trivial size because as the number of possible links to form increases, it

becomes more and more difficult to conceive an individual-level confounding variable that

affects the formation of only one of these links but not any other.

A direct consequence of these two assumptions is that the propensity scores of pairwise

linking can be identified from the distribution of network links. This is because an unob-

served sufficient confounder, defined as a random variable that captures all the confounding

factors, can be identified up to a measure-preserving transformation. In particular, the first

assumption rules out the existence of any multi-link confounders other than the sufficient

confounder, and the existence of single-link confounders is assumed away by the second as-

sumption (Wang and Blei, 2019a). Even though this sufficient confounder is not directly

observed in the data, it is nonetheless identified up to a measure-preserving transformation

from the distribution of network links as the number of nodes goes to infinity (Diaconis and

Janson, 2007; Auerbach, 2022). This identification result means that the propensity scores

of pairwise linking can be inferred from the adjacency matrix, allowing the use of propensity

score-based estimators to address confounding.

Unlike traditional propensity score estimation procedures where the probability of treat-

ment is regressed on a set of observed pre-treatment variables, here the propensity scores are

estimated using only the observed network links, that is, the treatments themselves. One

way to operationalize the estimation is to use probabilistic factor models to capture the joint

distribution of the links (Wang and Blei, 2019a). This involves specifying the distributions

of the sufficient confounder and the distributions of the network links conditional on the
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sufficient confounder. It is, however, not important which specific distributions one chooses

to use, as long as the overall joint distribution of the network links is well captured. An

alternative is to estimate the propensity scores with procedures developed in the network

link prediction literature (e.g. Zhang et al., 2017; Olhede and Wolfe, 2014). With the esti-

mated propensity scores, we can then use inverse probability weighting, subclassification, or

propensity score matching to estimate the desired causal effect.

Thanks to these identification and estimation results, this paper will conduct one of

the first empirical analyses aiming to understand the causal effect of one of the most well-

known endogenous networks, friendships. Despite being the main focus of the social network

literature, the impact of friendship networks has not been well-understood empirically due

to the endogeneity problem. The only few existing papers that attempted to address the

endogeneity issue did so by both restricting the way friendships are formed and the variables

that affect this formation, subjecting the estimated results to bias when the true network

formation process has a different form (e.g. Goldsmith-Pinkham and Imbens, 2013; Gagete-

Miranda, 2020).

Most papers in the empirical peer effect literature circumvent the endogeneity issue by

looking at other social networks which are quasi-randomly formed. For example, Cools et

al. (2022) investigates how the presence of more high-achieving male and female students in

high school affects boys’ and girls’ bachelor’s degree attainment differently. They do so by

exploiting the random variations in cohort composition, a strategy commonly employed in

the peer effect literature (e.g. Hoxby, 2000; Olivetti et al., 2020, etc.). Cools et al. (2022)

finds that being exposed to more male high achievers decreases girls’ likelihood of obtaining a

bachelor’s degree, in part by decreasing their confidence and aspiration. While these studies

offer exciting findings on the effect of cohort composition, a common drawback is that the

impact of social interactions cannot be separated from the influence of other factors that also

vary across cohorts, such as differences in teachers’ attitudes. Moreover, some of the most

meaningful social interactions with long-term consequences only exist among close friends

and not those who simply attend the same school during the same year. As a consequence,

the patterns of peer influence among friends have largely remained unknown.
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Using high school friendship data from AddHealth,3 the same dataset used by Cools et

al. (2022) and many other studies on social networks (e.g. Goldsmith-Pinkham and Imbens,

2013; Bifulco et al., 2014; Badev, 2021; Olivetti et al., 2020), I test whether the negative

impact of high-achieving male students on female students persists when these boys are

considered friends by the girls. Interestingly, I find that an additional male high-achieving

friend causally increases the probability that a female student obtains a bachelor’s degree

by 3 p.p. Further analysis suggests that this positive influence results from an increase in

their confidence and not in their academic ability measured by GPA. Indeed, having one

more male high-achieving friend means the female student becomes 3.75 p.p more likely to

self-report being more intelligent than their same-age peers, but no effect is found for their

grades in any of the main subjects.4 Taking these results together with the findings of Cools

et al. (2022), it seems that girls are intimidated by high-achieving boys whom they do not

have close relationships with, but are encouraged by those whom they see as friends. This

suggests that a possible way to boost the confidence of female students and increase their

chances of graduating from college is by fostering friendships with high-achieving boys in

their high school.

This paper is closely related to the literature on peer effect, especially the contextual peer

effect defined in Manski (1993). Roughly speaking, contextual peer effect refers to the effect

of peer characteristics on own outcome and is usually expressed as a parameter in a struc-

tural model. In order to identify the estimated parameter, empirical researchers have taken

advantage of settings with either random treatments or random peers. The former is where

peer relationships are fixed and characteristics of the network nodes are randomized, while

the latter is where nodal characteristics are fixed but peer relationships are randomized. In

other words, the former is related to treatment spillover, while the latter is about the linking

effect. Because these two cases correspond to two completely different hypothetical inter-

ventions, using one parameter to represent their effects can sometimes lead to misleading

interpretations of the estimates.5 My paper avoids the issue of misinterpretation by devel-

3AddHealth, or the National Longitudinal Study of Adolescent to Adult Health, is a dataset of represen-
tative US high schools.

4Both the self-reported intelligence and the grades are measured one year after the friendship data was
collected. The main subjects are math, science, English, and history.

5See Bramoullé et al. (2020) for more analysis on the problem of misinterpretation.
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oping a causal framework tailored for the study of linking effects accommodating random

peers as a special case.6 Since in the linking effect framework the only type of treatment is

the existence of the links, the interpretation of the estimates is clear.

To the best of my knowledge, Li et al. (2019) and Basse et al. (2019) are the only papers

to have made the distinction between randomized treatments and randomized peers using

a formalized causal framework. However, the focus of their papers is on inference issues

rather than identification, as they only consider cases where agents are assigned to groups

randomly. They also focus their analysis on peer networks with a non-overlapping group

structure, such as roommate networks. My framework, in contrast, allows the networks to

have arbitrary structures and is suitable for analyzing both experimental and observational

data.

In terms of identification, several econometrics solutions have been proposed to tackle

the network endogeneity issue for Manski (1993)’s linear-in-means model. The majority do

so by jointly modeling the outcome equation and the network formation equation. From

Goldsmith-Pinkham and Imbens (2013) and Hsieh and Lee (2016), to Arduini et al. (2015)

and Johnsson and Moon (2021), then to Auerbach (2022), assumptions used to achieve

identification have been progressively relaxed. Even though the assumptions of my paper

are formulated in the potential outcome framework, they can be translated into modeling

restrictions in the linear-in-means regression context. This translation exercise reveals that

the aforementioned papers impose all of the assumptions required by this paper, but more.

In particular, I show that neither outcome modeling nor network formation modeling is

necessary for identification. That is we do not need to know which observed and unobserved

variables enter the peer effect outcome equation and network formation equation or how

they enter the equations, be it additive, multiplicative, or interactive. In fact, not only is

it unnecessary, but it could be harmful because incorrectly specifying these equations could

lead to biased estimates.

The rest of the paper is organised as follows. Section 2 gives the formal definitions of

6If peer relationships are randomized, there will be no need to address the confounding (endogeneity)
problem. The causal framework of the linking effect can still be used; the only difference is that there will
be no need to infer the unobserved confounders and use them to correct for confounding, as randomization
guarantees no confounding exists.
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the treatment and the potential outcome, based on which several linking effect estimands

to study peer influence are proposed. Section 3 provides the identification conditions and

Section 4 discusses how existing propensity score-based estimators can be adapted for estima-

tion. Section 5 gives simulation evidence on the bias reduction performance of the proposed

identification and estimation strategy. Finally, Section 6 applies these estimators to real

data to study the effect of high school friendship on students’ bachelor’s degree attainment.

Section 7 concludes.

2 Treatments, potential outcomes, and estimands

Suppose we are interested in a certain peer relationship network with N nodes and directed

links among these nodes.7 When a node is on the receiving end of the potential link, I call

it the link receiver. When a node is on the sending side of the potential link, I call it a link

sender. A node can act as a link receiver in one link while acting as a link sender in another

and vice versa. In this paper, the outcomes of interest are measured on the link receivers,

but we could just as easily measure outcomes on the link senders. When I write a pair of

nodes (i, j), the first component is the link receiver, and the second component is the link

sender. Whenever suitable, I also use subscripts to indicate the link receiver and superscripts

as the link sender. In this paper, I will write Dj
i = 1 if there is a directed link from sender j

to receiver i. The linking status of all pairs can be represented by the adjacency matrix D:

D =


0 D2

1 ... DN
1

D1
2 0 ... DN

2

... ... ... ...

D1
N D2

N ... 0


,

The diagonal of the adjacency matrix is 0 because we do not allow one to be their own peer.

7The case with undirected links is left for future work.
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2.1 Treatments and potential outcomes

The treatment of interest is the linking status among pairs of network nodes. For example,

for a friendship network, the treatment of interest would be the directed friendship from

one person to another.8 With two hypothetical pairwise relationships, Figure 1 highlights

the hypothetical intervention, i.e., the treatment, that is the focus of this paper. Each

relationship has three components: the receiver (R), the sender (S), and the linking status

(D). In this example, the two relationships have the same receiver and sender but have

different linking statuses. On the left, the link from the sender to the receiver exists, but on

the right, the link doesn’t exist. The type of causal question this paper asks is “ What would

the receiver R1’s potential outcome be if it were “treated” with a link from sender S1 (left

panel of Figure 1 ), and what would the potential outcome be if it weren’t “ treated” with

this link (right panel of Figure 1 ), and the difference between the two potential outcomes?

”. In other words, what is the difference between Y1(D
S1
R1

= 1) and Y1(D
S1
R1

= 0)? The only

difference between the two hypothetical cases is the existence of the directed link from the

sender to the receiver. This is why we call the linking status the “treatment”.

It is important to emphasize that the hypothetical intervention this paper studies is not

the change in the sender characteristics.9 In this paper, link sender nodal characteristics de-

fine the treatment heterogeneity. As an example, consider color as the nodal characteristic.10

Figure 2 shows two hypothetical relationships between R1 and a different sender S2, where

S2 is red while S1 is orange. This means the effect of DS1
R1

on R1 could be different from

the effect of DS2
R1

on R1, therefore a link from S2 should be viewed as a different treatment

than a link from S1. In the most general case, we could allow linking effects to differ in

arbitrary observed and unobserved sender nodal characteristics. This is the stance taken by

this paper. As a result, links from senders with different identities are viewed as different

treatments. Since sender identity and the link itself has a one-to-one relationship in this

8Friendship doesn’t need to be a reciprocal relationship, as one person consider another person as a friend
doesn’t necessarily mean the other way holds. This is evidenced by the friendship nominations of high school
students in the Add Health data.

9The case where the hypothetical intervention is on the sender characteristics is the focus of the treatment
spillover literature.

10For instance, Li et al. (2019) and Basse et al. (2019) assume the effect of linking only depends on some
observed characteristic of the node chosen by the researcher ex-ante.
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Figure 1: Hypothetical intervention: two counterfactuals

paper, I sometimes also refer the link sender as the treatment. However, it should be clear

that the hypothetical intervention is on the relationship instead of the sender.

Given that any link receiver could potentially receive a link from N − 1 different link

senders, and each of these links is considered a unique treatment with a unique effect on

the receiver, we are in the case of multiple treatments, or multi-cause, causal inference.

In other words, for any link receiver i, its treatment is a vector of N − 1 linking status

Di := (D1
i , ..., D

i−1
i , Di+1

i , ..., DN
i ).

In traditional treatment causal inference, the potential outcome of any subject, the entity

that bears the treatment and whose outcome is measured, could depend on the treatment

status of all subjects in the population if no further assumption is made. The Stable Unit

Treatment Assumption (SUTVA) restricts the potential outcome to depend only on the

subject’s own treatment status. Here I will make a similar assumption to allow potential

outcomes to only depend on the receiver’s own treatment status. As just discussed, for any

receiver i, because her treatment is a vector of all pairwise linking status with the senders,

this means i’s potential outcome can be a function of all pairwise linking status where i is

the receiver, but couldn’t depend on the linking status where i is not the receiver. I call

this assumption the Linking-effect Stable Unit Treatment Unit Assumption (L-SUTVA) to
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Figure 2: A different link sender

differentiate it from the usual SUTVA.

Assumption 1 (L-SUTVA).

Yi(Di,D−i) = Yi(Di, D̃−i)

for any (D−i, D̃−i) and any i, where D−i = (D1, ...,Di−1,Di+1, ...,DN).

Under L-SUTVA, the potential outcome can be written as Yi(Di) or Yi(D
1
i , D

2
i , ..., D

N
i ).

In traditional causal inference, SUTVA is sometimes called the no-interference assumption.

However, this paper studies the effect of relationships, which suggests agents must interact

or interfere in some way. At first sight, the two may seem to be at odds. The reason

why L-SUTVA is perfectly compatible with the study of linking effect lies in the definition

of treatment. Recall what SUTVA says is that the treatment assignment of one subject

does not interfere with another subject’s potential outcome. In particular, it doesn’t require

the non-existence of network structure among the units. Whether SUTVA is likely to hold

depends on the definition of treatment and potential outcome. In this paper, since the

treatment is the relationship, the no-interference assumption implied by L-SUTVA means

that one’s potential outcome is only affected by one’s own relationships. L-SUTVA helps
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reduce the space of possible potential outcomes and makes it easier to identify and estimate

causal estimands. In this paper, I will always assume that L-SUTVA holds.11

2.2 Estimands

With the perspective that relationships are multiple treatments, causal estimands could be

flexibly defined by contrasting different types of potential outcomes. In this section, I will

focus on a straightforward set of estimands, which, loosely speaking, looks at the effect of

an additional link. Several other possible estimands, including the commonly used linear-in-

means estimands, are outlined in Section A.

As a first step, I define the pairwise estimand τ ji as the following contrast of i’s potential

outcomes:

τ ji = Yi(D
j
i = 1,D−j

i = d̄−j
i )− Yi(D

j
i = 0,D−j

i = d̄−j
i )

where D−j
i = (D1

i , ..., D
j−1
i , Dj+1

i , ..., DN
i ), and d̄−j

i is the corresponding vector of the realised

or observed treatment assignment for i after taking out dji . τ ji contrasts link receiver i’s

potential outcome when it receives treatment (a link) from link sender j with its potential

outcome when it doesn’t receive the link from j, while keeping the linking status from other

link senders fixed at their observed value.

Based on τ ji , we can proceed to define an average linking effect for links with j as the

sender:

τ j := Ei[Yi(D
j
i = 1,D−j

i = d̄−j
i )− Yi(D

j
i = 0,D−j

i = d̄−j
i )]

:=
1

N

N∑
i=1

Yi(D
j
i = 1,D−j

i = d̄−j
i )− Yi(D

j
i = 0,D−j

i = d̄−j
i )

This is simply taking the average of the linking effect τ ji overall link receivers. τ j is the

expected effect of the sender-j link. From all the link receivers, if we were to repeatedly pick

a receiver at random each time, τ j is what on average the causal effect of the sender-j link

would be.

Next, instead of looking at the average linking effect from one link sender j, we could

11L-SUTVA might not be realistic in some situations, e.g. where there is endogenous peer effect. In the
future, I will extend the analysis by relaxing L-SUTVA to allow some interference.
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look at the average linking effect from link senders with some attributes A = a.

τa := E(i,j):Aj=a[Yi(D
j
i = 1,D−j

i = d̄−j
i )− Yi(D

j
i = 0,D−j

i = d̄−j
i )]

:=
1

N

N∑
i=1

( 1∑N
j=1A

j = a

∑
Aj=a

(
Yi(D

j
i = 1,D−j

i = d̄−j
i )− Yi(D

j
i = 0,D−j

i = d̄−j
i )

))

Finally, we could restrict our attention to link receivers with certain attributes R = r,

where I use R to denote the attributes of interest for the link receivers. This can be easily

done by only averaging over the link receivers with R = r:

τar := E(i,j):Ri=r,Aj=a[Yi(D
j
i = 1,D−j

i = d̄−j
i )− Yi(D

j
i = 0,D−j

i = d̄−j
i )]

:=
1∑N

i=1Ri = r

N∑
i=1

( 1∑N
j=1 A

j = a

∑
Aj=a

(
Yi(D

j
i = 1,D−j

i = d̄−j
i )− Yi(D

j
i = 0,D−j

i = d̄−j
i )

))

The interpretation of these estimands deserves some special attention. Under L-SUTVA,

these estimands are well-defined and can be interpreted as the all-or-nothing effect in the

following sense. Take τa as an example, it can be interpreted as the expected contrast between

the average potential outcome of assigning a sender-j link to everyone in the node set and

the average potential outcome of assigning a sender-j link to no one in the node set, where

this j is chosen randomly (hence the expected contrast) with equal probability from the set

of link senders with attribute Aj = a. The interpretation of τar is similar to that of τa, except

that instead of looking at all link receivers in the node set, now we only look at link receivers

with Ri = r.12

12However, similar estimands can also be defined without the assumption of L-SUTVA. In this case, we
could simply modify the potential outcome function to include the entire adjacency matrix (Dj

i ,D−(i,j)). But
we can no longer interpret the estimands as the all-or-nothing effect. This is because when we simultaneously
change (Dj

1, D
j
2, ..., D

j
N ) for a given sender j, D−(i,j) is no longer at its observed value. Instead, the estimands

need to be interpreted as the expected treatment effect of j on a randomly chosen link receiver i, again
keeping the other links at their realized value. The difference is that in the second interpretation, in every
hypothetical experiment, intervention is only done on one link, and the average linking effect τ j is the average
from repeated experiments where a different link is modified each time. This is similar to the EATE in
Sävje et al. (2021) and the τ defined in Forastiere et al. (2021).
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2.3 Relationship between the linking effect and other peer effects

Let us for now abstract from the identification issue that the network could be endogenously

formed, but rather focus on the interpretation of the linking effect. The linking effect studies

the effect of the existence of network links on the nodes. One way to define the linking effect

is detailed in the previous section, but this is not the only linking effect one could study.

Some other possible estimands are given in Section A. While the linking effect is a newly

defined concept, it has been studied widely in the empirical peer effect literature with random

peer assignment. The latter literature normally studies the effect of configuering groups in

a way such that the share of people with certain characteristics in the group is increased

by one percentage point. Examples of these studies include Sacerdote (2001); Carrell et al.

(2013); Cools et al. (2022); Li et al. (2019). We can think of the combined groups as a big

network. Then in all these cases, the hypothetical intervention is on the configuration of the

network structure, while keeping the characteristics of the nodes constant.

Some other commonly seen effects in the peer effect literature include the endogenous peer

effect, the contextual peer effect, and the spillover effect. Both the endogenous peer effect

and the contextual peer effect are defined as the structural parameters in Manski (1993)’s

linear-in-means model.13 Simply speaking, within the structural model, the endogenous

effect is the effect of a change in peer group’s expected outcome on one’s own outcome, while

the contextual peer effect is the effect of a change in peer group’s average characteristics on

one’s own outcome. In this structural model, the network is considered fixed. The spillover

effect, in contrast, is a reduced form parameter that gives the causal effect of a change in

peer groups characteristics (or treatment) in one’s own outcome. Here the network is also

fixed, and the hypothetical intervention is on the nodal characteristics.

In some special situation, the linking effect could be the same as the contextual peer effect

or the spillover effect. For exposition purpose, suppose the outcome is a linear function of

all potential peer relationships with the effect of each linking depending on the total number

of realized links:

13Linear in sum model could be equivalently defined.

13



Yi = β0 + β1
D1

i∑N
j Dj

i

+ β2
D2

i∑N
j Dj

i

+ ...+ βN
DN

i∑N
j Dj

i

+ νi (1)

where a link from each different link sender j could have a different effect βj on the link

receiver. Here it is easy to see that if we impose the condition that βj = β if Xj = 1 for

some binary covariate X, and βk = 0 if Xk = 0, 1 can be simplified as

Yi = β0 + β

∑N
j Dj

iXj∑N
j Dj

i

+ νi (2)

This is the usual linear-in-means model. In this case, the linking effect parameter β is also

the spillover effect of treatment X, or the contextual effect of X when endogeneous peer

effect do not exist. However, as can be easily seen, this equivalence between the linking

effect and the other kinds of peer effects do not hold in general.

In terms of policy implications, the linking effect could inform policymakers of the benefit

and cost of forming groups in certain ways but cannot reveal the exact mechanism behind

such effects: whether it’s due to differences in gender, race, social economic status, GPA,

some unobserved characteristics, or a certain combination of all of the above. In contrast,

the treatment spillover effect or the contextual peer effect can tell us how someone is affected

by certain characteristics of the others when these characteristics are manipulated. But it

cannot inform policymakers how outcomes will change if they were to manipulate the net-

work structure so that one is connected to someone with or without those characteristics,

simply because the effect was not estimated from an experiment where the network struc-

ture is manipulated. Indeed, any network structure manipulation would not only result in

changes in a single characteristic of one’s peers but many other, possibly unlimited number

of characteristics of one’s peers. After all, the identities of their peers have been changed.

3 Identification

As in traditional causal inference, the average direct linking effects as defined in Section

2.2 cannot be directly calculated because only one of the counterfactuals in the pairwise
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linking effect τ ji is observed. If the network link assignment mechanism is known to the

researcher, such as the cases studied in Sacerdote (2001); Carrell et al. (2013); Li et al.

(2019); Basse et al. (2019), causal identification does not pose any challenge. However, in

non-experimental studies with observational data, the assignment mechanism is unknown,

and assumptions must be imposed on it to achieve identification. This is the case with

endogenously formed peer networks. One way to address this confounding issue is through

an unconfoundedness condition. Traditionally, unconfoundedness is achieved by assuming

all confounders are observed and measured in the data. In this paper, I do not make this

assumption, that is, I do not require all confounders to either be known or observed. The

basic idea is to find random variables that captures all the random variation in all the

confounders. Such random variables could also capture random variation of non-confounding

variables. Because of this, I call these random variables the sufficient confounders. Sufficient

confounders are not unique and could be unobserved. Wang and Blei (2019a) and Wang and

Blei (2020) provides conditions under which a sufficient confounder could be inferred from

the treatment assignment data alone. In the rest of this section, I will adapt these conditions

to the network case, discuss their meanings and provide intuitions. Interestingly, when the

network is vertex exchangeable (e.g. when the data is generated through random node

sampling from a superpopulation), some assumptions hold automatically.

3.1 Unconfoundedness

Assumption 2 (Doubly individualistic assignment mechanism). There exists random vari-

ables {Ui}1≤i≤N and {Vi}1≤i≤N with the smallest σ-algebra, such that equation (3) holds.

Pr(D = d|U1, ...,UN ,V1, ...,VN) =
N∏
i=1

N∏
j ̸=i

Pr(Dj
i = dji |Ui,Vj) (3)

Because {Ui}1≤i≤N and {Vi}1≤i≤N have the smallest σ-algebra, they cannot capture

single-link confounders, because if they captures information on a variable that only affects

one link, {Ui}1≤i≤N and {Vi}1≤i≤N cannot have the smallest σ-algebra (Wang and Blei,

2020). Because of equation (3) holds, {Ui}1≤i≤N and {Vi}1≤i≤N must capture all multi-link

variables (Wang and Blei, 2019a). The intuition is that if there exists a random variable W
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that is a multiple cause not captured by {Ui}1≤i≤N and {Vi}1≤i≤N , then the existence of

the links affected by this W will be dependent, even after conditioning on {Ui}1≤i≤N and

{Vi}1≤i≤N . This is a contradiction that {Ui}1≤i≤N and {Vi}1≤i≤N renders the distribution

of network links conditionally independent. We can think of Ui as link receiver specific

variables and Vj as link sender specific variables. For any node i, Ui and Vi could share

some common components. For example, for a high school friendship network, the ambition

of student i could affect both from whom they receive links through Ui and to whom they

send links through Vi. More detailed discussion on this assumption is given in the Section

3.2.

Assumption 3 (No single-link confounder). The following weak unconfoundedness condi-

tion holds:

Pr(Di = di|Ui,V1, ...,VN , Yi(d)) = Pr(Di = di|Ui,V1, ...,VN) (4)

for i = 1, ..., N and and for all possible d, where U,V are those defined in equation (3).

This assumption is called the no single-link confounder assumption because U,V have

captured all variables that affect the multi-link variables, therefore they must have captured

all multi-link confounders. This is because a confounder is a random variable that affects

the link formation but also affects the potential outcome. For the weak unconfoundedness to

hold, it is sufficient and necessary that no confounder that affect only one link exists (Wang

and Blei, 2020).

Lemma 1 (Pairwise unconfoundedness). Under Assumption 1, 2 and 3, the following holds:

Pr(Dj
i = 1|Ui,Vj, Yi(D

j
i = 1,D−j

i = d̄−j
i )) = Pr(Dj

i = 1|Ui,Vj)

and

Pr(Dj
i = 0|Ui,Vj, Yi(D

j
i = 0,D−j

i = d̄−j
i )) = Pr(Dj

i = 0|Ui,Vj)

Lemma 1 holds because under assumptions 2 - 3, {Ui}1≤i≤N and {Vi}1≤i≤N captures

all the confounders that could possibly affect any Dj
i . Suppose not, then this uncaptured
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confounder affects either only Dj
i (a single-link confounder), or it affects Dj

i and another

link (a multi-link confounder). The first case violates assumption 3 and the second case

violates assumption 2. Finally, because from {Ui}1≤i≤N and {Vi}1≤i≤N only Ui,Vj affects

Dj
i , Pr(Dj

i = 1|Ui,Vj, Yi(D
j
i = 1,D−j

i = d̄−j
i )) = Pr(Dj

i = 1|Ui,Vj).

Next, I prove that the pairwise unconfoundedness condition also holds conditional on the

propensity score based on Ui,Vj. The propensity score e(Ui,Vj) is defined as e(Ui,Vj) :=

Pr(Dj
i = 1|Ui,Vj).

Lemma 2 (Pairwise unconfoundedness given e(Ui,Vj)).

Pr(Dj
i = 1|Yi(D

j
i = 1,D−j

i = d̄−j
i ), e(Ui,Vj)) = Pr(Dj

i = 1|e(Ui,Vj))

and

Pr(Dj
i = 0|Yi(D

j
i = 1,D−j

i = d̄−j
i ), e(Ui,Vj)) = Pr(Dj

i = 0|e(Ui,Vj))

This result is similar to the propensity score property result in the traditional causal

inference, where unconfoundedness holds given the propensity score. The proof of Lemma 2

is given in Section D.1.

3.2 Discussion on Assumption 2

To compare the doubly individualistic assignment mechanism assumption with the individ-

ualistic assignment mechanism asssumption of traditional causal inference, it is useful to

rewrite the “doubly” assumption as follows.

Pr(D = d|U1, ...,UN ,V1, ...,VN)

=
N∏
i=1

Pr(Di = di|Ui,V1, ...,VN)

=
N∏
i=1

Pr(D1
i = d1i , ..., D

N
i = dNi |Ui,V1, ...,VN)

=
N∏
i=1

N∏
j ̸=i

Pr(Dj
i = dji |Ui,Vj)
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Recall that the vector Di represents the treatment assignment vector of link receiver i, there-

fore the first equation, and equivalently, the second equation, is exactly the individualistic

assignment mechanism sssumption in traditional causal inference, which states that condi-

tional on some random variables, the treatment assignments across subjects, in our case,

the link receivers, are independent. Individualistic assignment always holds if we view the

subjects as randomly sampled from some superpopulation, as a result of the De Finetti’s

theorem (Imbens and Rubin, 2015).14

On top of that, the doubly individualistic assignment mechanism assumption also as-

sumes that for each link receiver i, the assignment of each individual link across all link

senders are independent conditional on the receiver: as the name “doubly” suggests. How-

ever, if the network nodes are randomly sampled from a superpopulation, the linking effect

doubly individualistic assignment mechanism assumption will be satisfied as a direct result

of the Aldous-Hoover Theorem (Crane, 2018), the equivalence of the De Finetti’s Theo-

rem for network data.15,16 This means with the super population perspective, both doubly

individualistic assignment mechanism assumption and the usual individualistic assignment

mechanism sssumption will automatically hold.

When the data is not sampled from a superpopulation, the assignment mechanism is

usually modeled as a stochastic process. For example, we might view the choice of a binary

treatment as the result of a random utility model. In traditional causal inference, for the

given treatment, the individualistic assignment mechanism sssumption restricts this stochas-

tic process of treatment assignment to be conditionally independent across subjects. In the

network case, the observed nodes may also be regarded as the finite population itself. But

because nodes are both link receivers and link senders, they are both subjects and treat-

ments. This is why modeling of two (or double) stochastic processes is needed. The first part

of the doubly individualistic assignment mechanism assumption requires that in the modeled

stochastic process, each link receiver is independently assigned the vector of all links, con-

14Superpopulation sampling is a perspective commonly adopted in traditional causal inference. See Imbens
and Rubin (2015) and Hernán and Robins (2020) for more discussions on this.

15More details of this are provided in Section C.1.
16Note that only random node sampling guarantees Assumption 2. Other sampling schemes, such as

random link sampling, do not enjoy this property. An example of link sampling is in the study of co-
authorship network where article is the sampling unit instead of the authors being the sampling unit.
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ditional on their own receiver specific variables. Here, “individualistic”, or “independence”,

is with regard to the subjects, or the link receivers. The second part of the assumption

requires that in the modelled stochastic process, for each link receiver, their link assignment

from each sender is independent across all link senders, conditional on the sender specific

variables. Here “individualistic”, or “independence”, is with regard to the treatments, or the

link senders. This means with the finite population perspective, the doubly individualistic

assignment mechanism assumption requires more restrictions than the usual individualistic

assignment aechanism assumption.

The second layer of the doubly individualistic assignment mechanism assumption requires

that for any given link receiver, when they decide which links to form, the linking decisions

must be mutually independent to some extent. That means even though the decisions

might not be unconditionally mutually independent, they must be conditionally mutually

independent. This excludes some networks, such as those with a non-overlapping group

structure by construction and cases where each node can only form a limited number of links.

For example, a roommate network cannot have conditionally mutually independent links.

This is because if i and j are roommates, and j and k are not roommates, that means i and k

are not roommates, no matter what variables are conditioned on. However, the assumption

does accommodate cases where networks are formed with strategic considerations, as long

as the equilibrium linking decisions are not direct functions of each other. An example

where the assumption could be satisfied is the case analyzed by Leung (2015). In that

paper, the network formation game is characterized by strategic interactions with incomplete

information, where utility depends on the entire network structure. The idea is that when

the agents’ objective is to maximize their expected utility, i’s linking decisions will be a

function of equilibrium beliefs about others’ linking decisions, which is a function of the

observed attributes of all agents in the network. This means for each agent i, her linking

decisions are not directly dependent of each other. If we allow independent utility shocks for

all her linking decisions, the doubly individualistic assignment mechanism assumption will

be satisfied. More details of this example are given in Section C.2.

It is important to point out that Assumption 2 is different from, and in fact, less re-

strictive than the assumption underlying dyadic regressions. Dyadic regressions, such as
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those analyzed in Graham (2020), usually assumes that linking decisions are independent

conditional on some observed attributes X and unobserved latent attributes ϵ satisfying

E[ϵ|X = 0]:

Pr(D = d|X1, X2, ..., XN , ϵ1, ϵ2, ..., ϵN) =
N∏
i=1

N∏
j ̸=i

Pr(Dj
i = dji |Xi, Xj, ϵi, ϵj) (5)

Running a dyadic regression requires one to impose additional assumptions on the functional

form of the pairwise linking probability: Pr(Dj
i = 1|Xi, Xj, ϵi, ϵj) = f(Xi, Xj, ϵi, ϵj) for some

known f . This functional form differentiates dyadic regressions and the assumption of doubly

individualistic assignment mechanism. When the functional form restriction does not reflect

the true data-generating process, the parameters in dyadic regressions are biased for the true

effect of X on the pairwise linking probabilities and inference is invalid.17 But why is the

functional form assumption necessary for dyadic regressions but not for this paper? This

is due to different objectives of the two cases. The goal of dyadic regressions is usually to

estimate the parameters associated with the observed covariates to understand the role of

these covariates in determining linking probabilities, such as those in estimating the gravity

models studying the association between GDP and trade flow. In contrast, this paper aims

to identify and estimate the causal parameters of the outcome equation. Assumptions on

link formation, are only used to correct for confounding. Identifying such causal effects of

the links on the final outcome does not require knowing the functional form of the linking

equation. Therefore, there is no need to estimate parameters associated with the observed

attributes.

3.3 From Unconfoundedness to the identification of estimands

Assumption 4 (Identification of propensity scores). ∀i, j, Pr(Dj
i = 1|Ui,Vj) is identified

from the network data D, where U and V are the random variables defined in assumption

2.

As explained earlier, these propensity scores are the probabilities forming graphons when

17To see why inference is invalid, note that mis-specifying the functional form will make the linking
probabilities dependent across pairs, while pairwise independence is crucial for likelihood based inference.
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the network is vertex exchangeable. It is shown that these graphon probabilities are in-

dentified in the sense that with infinite nodes, only one set of probabilities are consistent

with the data (Diaconis and Janson, 2007; Auerbach, 2022). Since the propensity score

e(Ui,Vj) = Pr(Dj
i = 1|Ui,Vj), the propensity score is also identified ∀i, j.

Assumption 5 (Pairwise Positivity). 0 < Pr(Dj
i = 1|Ui,Vj) < 1 for all i ̸= j, where U

and V are the random variables defined in Assumption 2

Proposition 1. Under Assumptions 1, 2, 3, 4 and 5, the average direct linking effect is

identified. For link receivers with characteristics r and link senders with characteristics a,

this means

τar = E(i,j):Ri=r,Aj=a

[
E(i,j):Ri=r,Aj=a[Y

obs
i |e(Ui,Vj), D

j
i = 1]

]
− E(i,j):Ri=r,Aj=a

[
E(i,j):Ri=r,Aj=a[Y

obs
i |e(Ui,Vj), D

j
i = 0]

]
This is proved in Section D.2. Note that here we only need pairwise positivity because

the estimand is defined through pairwise contrasts where all non-focal pairwise links are

kept at their realised value. If we want to define an estimand where all of one’s links are

manipulated simultaneously, we will run into a problem where the positivity condition will

fail. This is discussed more in detail in Section A.1. Similar discussions can be found in Imai

and Jiang (2019); Johnsson and Moon (2021); Auerbach (2022).

3.4 Relationship with previous econometric solutions

Given the close relationship between the linking effect and the peer effect literature, the iden-

tification strategy proposed by this paper is naturally related to the literature on addressing

the network endogneity issue when analysing various kinds of peer effect. In particular, it is

related to the econometric literature where the peer effect outcome equation and the network

formation equation are jointly modelled, similar to a control function approach (Goldsmith-

Pinkham and Imbens, 2013; Hsieh and Lee, 2016; Arduini et al., 2015; Johnsson and Moon,

2021; Auerbach, 2022). The paper closest to mine is Auerbach (2022) as identification in

both do not impose parametric restrictions on the network formation process. Even though

Auerbach (2022) was not specifically designed to study the linking effect or peer effect, it
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could be used for this purpose if we assume the data generation process of the outcome

follows (2) with νi composed of λ(wi) + ϵi:

Yi = β0 + β

∑
j D

j
iXj∑

j D
j
i

+ λ(wi) + ϵi (6)

Auerbach (2022) considers the network formation model

Dj
i = 1{f(wi, wj) ≥ ηji } i ̸= j (7)

Neither λ(·) or f(·) need to be known or parametrically specified. The following main

assumptions are imposed on (6 ) and (7):

1. The random sequence {
∑

j D
j
iXj∑

j D
j
i

, wi, ϵi}Ni=1 is independent and identically distributed

with entries mutually independent of {ηji }Ni,j=1.

2. {ηji }Ni,j=1 are i.i.d and ηji ⊥⊥ wi, wj.

3. E[ϵi|
∑

j D
j
iXj∑

j D
j
i

, wi] = 0.

4. There is variation in
∑

j D
j
iXj∑

j D
j
i

after conditioning on wi.

5. The function f(wi, ·) is enough for controlling for the confounding from λ(wi).

Point 2 implies that the network is vertex exchangeable with f(wi, wj) = Pr(Dj
i = 1|wi, wj).

It implies Assumption 2 (doubly individualistic assignment mechanism) and Assumption

4 (propensity score is identified). As discussed in Section C.1, w̃ defined as the w with

the smallest σ-algebra satisfying (7) is in fact U (and V). The corresponding η̃ji in Dj
i =

1{f(w̃i, w̃j) ≥ η̃ji } therefore is a single-link variable: it only affects the Dj
i link and not any

other link Dl
k for all (k, l) ̸= (i, j). Point 1 basically assumes that ηji is not a confounder: it

doesn’t affect the potential outcome. Combined with η̃ji being the only a single-link variable,

point 1 implies Assumption 3 (no single-link confounder). But we know that Assumption 2

and 3 means unconfoundedness (equation (4)) holds, which implies that Point 3 is satisfied.

Because f(wi, wj) = Pr(Dj
i = 1|wi, wj), f(w̃i, w̃j) is in fact the pairwise propensity score

under Assumption 2 and 3, which are implied by Point 1 and 2. This means Point 5 is
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implied by Point 1 and 2 when the framework of Auerbach (2022) is used to study the

linking effect. Finally, Point 4 is related to the positivity condition that 0 < Pr(
∑

j D
j
iXj∑

j D
j
i

=

t|wi) < 1 for all t ∈ [0, 1], because if there is no variation in
∑

j D
j
iXj∑

j D
j
i

after conditioning on wi,

Pr(
∑

j D
j
iXj∑

j D
j
i

= t|wi) must be either 0 or 1, violating the positivity assumption. As Auerbach

(2022) pointed out, Point 4 is actually violated when the outcome equation of interest is (6).

The same Point is also made in Wang and Blei (2019a), showing that this non-identification

result is due to the fact that
∑

j D
j
iXj∑

j D
j
i

is defined over all of the N − 1 potential treatments

(links). Furthermore, Wang and Blei (2019b) shows that if the estimand of interest is defined

over only a subset of all possible treatments, then the estimand is identified. In the case of

average direct linking effect defined in Section 2, the estimand is defined over one link only,

making it identifiable under the pairwise positivity condition.

Moreover, the identification results in this paper clarifies the meaning and the significance

of w in addressing network endogeneity. In fact, it is the w with the smallest σ-algebra that

allows identification by capturing all multi-link confounders. w does not need to have any

economically meaningful interpretation for unconfoundedness to hold, and it is not necessary

that w enters the outcome equation partial linearly.

4 Estimation

The estimation of the linking effect involves two steps. The first step is to estimate the

propensity scores. Unlike in traditional causal inference, the propensity scores estimated in

the first step are functions of unobserved latent variables. Therefore, the traditional propen-

sity score estimation methods won’t apply here. In Section 4.1, I show how techniques

developed in the graphon estimation literature in network analysis and the multiple treat-

ment literature in causal inference can be used for propensity score estimation. The second

step is to use the estimated propensity scores to estimate the linking effects. Here many

established methods from traditional causal inference can be used, such as inverse probabil-

ity weighting (IPW), propensity score matching, and propensity score subclassification. In

Section 4.2, I will illustrate how the inverse probability weighting method can be used to

estimate the linking effects. Propensity score matching and subclassification can be adapted
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similarly as shown in Section B.

4.1 1st-step estimation: propensity scores

4.1.1 Graphon Estimation

As discussed in Section C.1, the propensity score eji is the linking probability in a graphon

when nodes are randomly sampled from superpopulation. This means we could use the many

statistical methods in graphon estimation to estimate the propensity scores. Here I briefly

discuss how the neighborhood smoothing method proposed by Zhang et al. (2017) works.

Compared to other graphon estimation methods, such as stochastic block models (Olhede

and Wolfe, 2014), it has the advantage of not making restrictive assumptions on how links

are formed.

First let’s define a probability slice as e(Ui, ·) = (e(Ui,V1), e(Ui,V2), ..., e(Ui,VN)).

The main idea is that for any link receiver i, if we could find other link receivers with

similar probability slices as i, we could then use the realized treatment assignment of these

link receivers to estimate (e(Ui,V1), e(Ui,V2), ..., e(Ui,VN)). Specifically, let Ni := {i′ :

e(Ui′ , ·) ≈ e(Ui, ·)} be the neighbourhood of link receiver i. Then an estimator for eji :=

e(Ui,Vj) would be

ẽji =

∑
i′∈Ni

Dj
i′

|Ni|

To define the neighborhood, we first need a definition of similarity, or equivalently the

distance, between probability slices. Zhang et al. (2017) uses the d2 distance:

d(i, i′) = ||e(Ui, ·)− e(Ui′ , ·)||2 =
{∫

v

|e(Ui, )− e(Ui′ , v)|2)
}1/2
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Then

d(i, i′)2 =

∫
v

e(ui, v)e(ui, v) +

∫
v

e(ui′ , v)e(ui′ , v)− 2

∫
v

e(ui, v)e(ui′ , v)

=

∫
v

(e(ui, v)− e(ui′ , v))e(ui, v) +

∫
v

(e(ui′ , v)− e(ui, v))e(ui′ , v)

≤
∣∣∣∣ ∫

v

(e(ui, v)− e(ui′ , v))e(uĩ, v)

∣∣∣∣+ ∣∣∣∣ ∫
v

(e(ui, v)− e(ui′ , v))e(uĩ′ , v)

∣∣∣∣+ 2eN

≤ max
k ̸=i,i′

2

∣∣∣∣ ∫
v

(e(ui, v)− e(ui′ , v))e(uk, v)

∣∣∣∣+ 2eN

where ĩ and ĩ′ are such that |uĩ−ui| ≤ eN and |uĩ′−ui′ | ≤ eN , and eN depends on n and is the

error rate. Zhang et al. (2017) shows that such ĩ and ĩ′ can be found with high probability.

The first part of maxk ̸=i,i′ 2

∣∣∣∣ ∫v(e(ui, v)− e(ui′ , v))e(uk, v)

∣∣∣∣ can be estimated by

d̃(i, i′) = max
k ̸=i,i′

|(Di −Di′)D
′
k|

n
.

Intuitively, neighbourhood Ni should include i′ with small d̃(i, i′). Zhang et al. (2017)

defines Ni as

Ni = {i′ ̸= i : d̃(i, i′) ≤ qi(m)}

where qi(m) is the m’th quantile of {i′ ̸= i : d̃(i, i′)}. Zhang et al. (2017) showed that with

m = C(n−1logn)1/2 for any constant C ∈ (0, 1], if the propensity score function e(·, ·) is

Piecewise-Lipschitz, then ẽji is consistent for e(Ui,Vj).
1819

4.1.2 Factor models

Propensity scores e(Ui,Vj) can also be estimated with factor models. This method requires

us to specify the distribution of Ui, Vj, and Pr(Dj
i = 1|Ui,Vj) for all i, j = 1, ...N . For

18Definition of Piecewise-Lipschitz: For any δ, L > 0, let Fδ;L denote a family of piecewise-Lipschitz
functions m: [0, 1]2 → [0, 1] such that (i) there exists an integer K ≥ 1 and a sequence 0 = x0 < · · · < xK

satisfyingmin0≤s≤K−1(xs+1−xs) ≥ δ, and (ii) both |e(u1, v)−e(u2, v)| ≤ L|u1−u2| and |e(u, v1)−e(u, v2)| ≤
L|u1 − u2| hold for all u, u1, u2 ∈ [xs, xs+1], v, v1, v2 ∈ [xt, xt+1] and 0 ≤ s, t ≤ K − 1.

19Auerbach (2022) uses a similar idea in the development of its estimator.
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exposition purposes, let Ui = (U1i, U2i) and Vj = (V1j, V2j) be vectors of length 2. A simple

factor model could be

α, U1i, U2i, V1j, V2j ∼ N (0, 1), i, j = 1, ..., N

e(Ui,Vj) = logit(α + U1iV1j + U2iV2j), i, j = 1, ..., N (8)

Even though estimating the propensity scores with factor models impose additional func-

tional form assumptions on the network formation, they are very flexible and versatile.

Every aspect of the model can be modified, including the length of unobserved sufficient

confounders, their distributions and how these confounders enter the probability distribu-

tion of the propensity scores, be it additive or multiplicative, be it linear or quadratic.20

To operationalize the use of factor models, I follow the deconfounding procedure proposed

by Wang and Blei (2019a). The deconfounder is a procedure proposed by Wang and Blei

(2019a) to address confounding in the setting of multiple treatments. It can be used in

our setting because each link can be viewed as a treatment. Applying the deconfounder to

estimate the propensity scores involves three steps. In the first step, we need to randomly

select a portion of links in the adjacency matrix and set them to 0, effectively partitioning

it into training data and validation data. In the second step, we need to pick a factor model

and fit the factor model with the training data. In the third step, validation data is used to

compute a test statistics to decide whether the factor model fits the data well enough. If the

test is passed, then we proceed to the estimation with the estimated propensity scores. If

the test fails, then another factor model could be used and step two repeated until we find

a factor model that passes the test.21

20Not only can we choose another family of distributions, it is also possible to allow dependence among U
and V by adding another layer of factorization. For example,

wi, wj ∼ N (0, 1), i, j = 1, ..., N

U1i, U2i, V1j , V2j |wi, wj ∼ N (wi + wj , 1), i, j = 1, ..., N

21The idea of using a statistical test on validation data to see if propensity scores are accurately estimated
can also be used for the neighborhood smoothing estimator, or any other graphon estimator. In fact, a
similar idea was used in Zhang et al. (2017) to compare the performance of different graphon estimators.
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4.2 2nd-step estimation: treatment effect

Once the propensity scores of link formation are estimated, we could use the many propensity

score-based methods commonly used in the treatment effect estimation literature to estimate

the linking effects of interest. In this section, I will use an inverse probability weighting

estimator to illustrate how these propensity score-based methods can be adapted to the

current setting. The most basic IPW estimator is the Horvitz–Thompson estimator. The

augmented inverse probability weighting (AIPW) could be used to include covariates in the

outcome model. AIPW is commonly referred to as the doubly robust estimator because it

is consistent if either the propensity score is correctly estimated or the outcome model is

correctly specified.

The IPW estimator for the linking effect

τar := E(i,j):Ri=r,Aj=a[Yi(D
j
i = 1,D−j

i = d̄−j
i )− Yi(D

j
i = 0,D−j

i = d̄−j
i )]

is

1∑N
i=1Ri = r

· 1∑N
j=1A

j = a

( ∑
i:Ri=r

∑
j:Aj=a

Dj
i · Y obs

i

e(Ui,Vj)
−

∑
i:Ri=r

∑
j:Aj=a

(1−Dj
i ) · Y obs

i

1− e(Ui,Vj)

)
(9)

where e(Ui,Vj) is substituted with its estimate since the true propensity score is unknown.

Same as the conventional IPW estimator, the IPW estimator in equation 9 is unbiased for the

linking effect τar . The proof is detailed in Section D.3. A regression model (10) can be used

to incorporate additional pre-treatment control variables, where each pairwise observation is

weighted based on their propensity score. The additional control variables help reduce finite

sample biases just as in the traditional augmented inverse probability weighting estimator.

Yi = α + βDj
i + θControls+ ϵji (10)

5 Simulation

In this section, I conduct simulation exercises with synthetic data to assess the performance

of the proposed linking effect estimators. I will generate the synthetic data according to
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the data generation model (11); one is a version of the homophile model, and the other is a

statistical block model. Then I use a factor model to estimate the propensity scores. These

propensity scores are then used in the second stage estimation with three different estimators:

the inverse probability weighting (IPW) estimator, the nearest matching estimator, and the

subclassification estimator. Finally, I will compute the bias and the mean absolute error

(MAE) of the estimates relative to the true effect and compare them with the bias and MAE

of the naive OLS estimator that ignores confounding.

ϵci ∼ N (0, 1)

ϵbi ∼ U [0, 1]

Xi ∼ Bernoulli(0.6)

Ci ∼ U [0, 1]

ηij ∼ U [0, 1] (11)

Dij = 1{g(Ci, Cj) ≥ ηij}, g = g1, g2

Y c
i = αc +Diβ

c + γcCi + δcXi + ϵci

Y b
i = 1{logit(αb +Diβ

b + γbCi + δbXi) ≥ ϵbi}

where logit(s) =
1

1 + exp(−s)

where (αc, γc, δc) = (0.5, 4, 1), (αb, γb, δb) = (−4, 4, 1). βc(b) = (β
c(b)
1 , ...β

c(b)
j , ..., β

c(b)
N ) is a

vector of parameters relating to the causal effect of a link from sender j. I set βc
j = Xj/2 for

all j. βb
j = Xj/2 for all j. g1 is specified in equation (12) and g2 is specified in Section E.1,

equation (24).

g1 : P
j
i = 1/5

(
1 + exp(−(−6 + 2.5C1 + 1.5Cj + |Ci − Cj|))

)
(12)

In this simulation exercise, I consider both continuous and binary outcome variables,

which are denoted by Y c and Y b, respectively. The network links are generated through a

binomial process with success probability specified according to two different link generation
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processes, g1 as in equation (12) and g2 as in equation (24). g1 incorporates both degree

heterogeneity and homophily. On the one hand, it is an increasing function in Ci and Cj. On

the other hand, the probability of linking increases as the difference in Ci and Cj becomes

smaller between the link receiver and the link sender. g2 corresponds to a stochastic block

model. The details of g2 and its corresponding simulation result is detailed in Section E.1.

Both g1 and g2 generate directed networks. In our setup Ci is the confounder. It enters both

the outcome and link formation equations and is unobserved to the econometrician. Ci, Xi,

ϵci ,ϵ
b
i and ηij are independent of each other, for all i, j = 1, ...N .

The mean degree distribution of g1 from the simulated datasets is given in Table 1. As the

network size increases, the degree increases. This is because the linking probability doesn’t

change as the network grows in our link generation model. This means the more nodes there

are in the network, the more link senders there are, and thus the more links a link receiver

will have.

Table 1: Mean degree distribution for simulated g1 networks

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

N=100 0 0 0 0 0 0.1 0.8 1 1.1 1.9 4.2
N=300 0 0 0.2 1 1 1.6 2 2.6 3.3 4.7 10.2
N=500 0 0.2 1 1.5 2 2.7 3.2 4.1 5.5 7.4 15.7

Note: This table reports the mean degree distribution of the simulated networks. For each size
N=100,300,500, and for each simulated network of that size, I caculate the deciles of the number of links
each link receiver receives, and average over all the 500 simulated networks of that size.

For the continuous outcome, I estimate the linking effects with the linear OLS regression

(13), and the binary outcome is estimated with the logistic regression (14). I run these re-

gressions separately for link senders with Xj = 0 and link senders with Xj = 1 to study the

effects of these link senders separately. For the propensity score-based methods, the regres-

sions are weighted with weights based on propensity scores that correct for confounding. For

the naive OLS, the regressions are unweighted, thus not correcting for any confounding. The

target estimand in this simulation exercise is ATT. This choice is reflected in the regression

weights.
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Y c
i = µi = ρ0 + ρ1D

j
i + vi (13)

Pr(Y b
i = 1) =

1

1 + exp
(
− (ρ2 + ρ3D

j
i )
) (14)

Table 2 compares the bias and MAE for the three propensity score-based estimators and the

naive ols estimator. The propensity score used in this table is estimated using the factor

model specified in equations (15)-(17). Comparing this factor model to the one in Section

4.1.2, Zi can be seen as γiUi and Vj can be seen as βjVj where Ui for i = 1, ..., N are

vectors of length two. The number of matches for the matching estimator is 1, and the

number of subclasses for the subclassification estimator is 8. The rows under X0 are the

estimates for the linking effect of a link from a sender with Xj = 0, whose true effects are

0 on both the binary and the continuous outcomes. The rows under X1 are the estimates

for the linking effect of a link from a sender with Xj = 1, whose true effect is 0.5 on the

continuous outcome. The true effect of an additional link from a sender with Xj = 1 on the

binary outcome depends on the number of other links from senders with Xj = 1 because the

true data generation process is non-linear. It is therefore calculated from the data generation

process for each observation and then averaged over all observations.

Zi = (z1i, z2i) ∼ N (0, 1)×N (0, 1), i = 1, ..., N (15)

Kj = (k1j, k2j) ∼ N (0, 1)×N (0, 1), j = 1, ..., N (16)

Dj
i |Zi, Kj ∼ Bernoulli

(
logit(Zi +Kj)

)
, i, j = 1, ..., N (17)

From Table 2, we can see that the estimators based on the propensity scores estimated

by the factor model offer significant bias reduction compared to the naive ols estimator. The

inverse probability weighting estimator performs the best among the three propensity score-

based estimators. Compared to the naive ols estimator, the inverse probability weighting
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estimator reduces 90% - 97% of the biases for the binary outcome and 51% - 83% of the biases

for the continuous outcome. As the network becomes larger, the bias reduction increases. An

interesting observation from the table is that the bias from the naive ols estimator increases

as the network becomes larger. This is because as the network becomes larger, the number

of links for link receivers increases. This will lead to increasingly larger accumulated linking

effects from all the other links being attributed to the effect of the link under consideration

as in equation (9). This phenomenon doesn’t happen if confounding is corrected because, in

this case, the other links are independent of the link under consideration. As we see from

the first three columns, the bias from the propensity score-based estimators continues to

decrease as N increases despite the increasing bias from the naive ols estimator. Table (12)

in Section E shows similar results for the statistical block model for network formation.

In Section E, I also show the biases and MAEs of propensity score-based estimators

using the factor model estimated propensity scores concerning the estimators using the true

propensity scores (Table 15 and Table 16). Finally, I show simulation results when I increase

the number of matches (from 1 to 3 to 5) and the number of subclasses (from 8 to 10 to

12) as the size of the network increases. The results from these different comparisons stay

similar to the ones shown in Table 2.

6 Empirical Application

Almost everyone would agree that friendship is one of the most important social networks in

a person’s life. After all, one does not simply spend time with their friends; they also share

information, receive their help, value their opinions, mimic their actions, and learn from their

experiences. But it would be much more difficult to get everyone to agree on the direction

and extent to which a person would be affected by their friends. The social network literature

has long been interested in understanding the pattern of peer influence among friends for

outcomes including risky behavior, smoking habits, obesity, education level, labor outcomes,

fertility, etc. However, due to the obstacle posed by endogenous friendship formation, these

questions remain largely unanswered, at least not in ways where the endogeneity issue is

adequately accounted for.
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Table 2: Simulation results for g1

IPW Matching Sub Naive ols

Yb Bias X0

N=100 0.077445 0.096851 0.093895 0.132864
N=300 0.051917 0.086736 0.091974 0.1705
N=500 0.033176 0.084199 0.087752 0.184117

X1

N=100 0.078718 0.094838 0.092844 0.132779
N=300 0.04753 0.083476 0.087602 0.166086
N=500 0.034532 0.085371 0.089037 0.185265

MAE X0

N=100 0.102707 0.137418 0.111374 0.142808
N=300 0.054298 0.087305 0.091974 0.1705
N=500 0.03435 0.084199 0.087752 0.184117

X1

N=100 0.09447 0.11907 0.103271 0.137679
N=300 0.050589 0.0838 0.087611 0.166086
N=500 0.036061 0.085371 0.089037 0.185265

Yc Bias X0

N=100 0.494439 0.591209 0.583515 0.802809
N=300 0.261106 0.483215 0.498769 0.9596
N=500 0.173155 0.512221 0.533149 1.144263

X1

N=100 0.454354 0.534451 0.539381 0.765181
N=300 0.257676 0.47056 0.493571 0.95376
N=500 0.174887 0.507023 0.533092 1.142917

MAE X0

N=100 0.518549 0.62927 0.595459 0.806389
N=300 0.26409 0.483215 0.498769 0.9596
N=500 0.176396 0.512221 0.533149 1.144263

X1

N=100 0.466298 0.558012 0.542142 0.765513
N=300 0.258652 0.47056 0.493571 0.95376
N=500 0.176375 0.507023 0.533092 1.142917

Note: This table reports for the g1 model the bias and the mean absolute error
(MAE) of the inverse probability weighting estimator, the nearest neighbour matching
estimator with replacement, the subclassification estimator and the narive ols estima-
tor, compared to the true linking effects, for link sender with Xj = 0 and Xj = 1
separately. The number of matches for the matching estimator is 1, the number of
subclasses for the subclassification estimator is 8. All the estimates are for the average
treatment effect for the treated.
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Thanks to the theoretical results developed in this paper, I am able to make one of the

first steps toward uncovering the true impacts of friendship. With the AddHealth data, I

will be investigating the patterns of peer influence among high school friends in the U.S.

Specifically, I look at how students’ probability of graduating from college is affected by

having more high-achieving friends, and whether this effect differs by both the gender of

themselves and the gender of the high-achieving friend.22 The analysis is inspired by the

recent paper by Cools et al. (2022), which also uses the AddHealth data and finds that being

exposed to more high-achieving males in one’s high school decreases the likelihood that a

female student obtaining a bachelor’s degree. It also finds that this negative effect could be

partly explained by a decrease in the girls’ confidence and aspirations, as well as their grades

in math and science. But do high-achieving male friends also have this negative impact on

girls? At the end of the day, interactions and social influence among close friends could be

very different from those among students who simply attend the same school and might not

have close and friendly interactions.

The results indicate that the effect of friendship could indeed be very different from the

effect of cohort peers. Noticeably, an additional male high-achieving friend increases the

probability of a female student obtaining a bachelor’s degree by 3 percentage points. Het-

erogeneity analysis reveals that this positive effect of male high flyer friendship is mainly

driven by female students with below median ability as measured by their PVT score. Evi-

dence also suggests that the effect mainly comes from a confidence boost instead of a tangible

influence on their GPA.

6.1 Data

The data used by this analysis is from the National Longitudinal Study of Adolescent to

Adult Health (Add Health).23 It is a longitudinal study of a nationally representative sample

22A high-achieving student is defined as a student who has at least one residential parent with a postgrad-
uate degree. This is the same definition used in Cools et al. (2022)

23This research uses data from Add Health, funded by grant P01 HD31921 (Harris) from the Eunice
Kennedy Shriver National Institute of Child Health and Human Development (NICHD), with cooperative
funding from 23 other federal agencies and foundations. Add Health is currently directed by Robert A.
Hummer and funded by the National Institute on Aging cooperative agreements U01 AG071448 (Hummer)
and U01AG071450 (Aiello and Hummer) at the University of North Carolina at Chapel Hill. Add Health
was designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris at the University of North
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of adolescents in grades 7-12 in the United States during the 1994-95 school year (Wave I).

In total, 172 schools were sampled. The Wave I data consists of an in-school questionnaire

for all students in the sampled schools, followed by an in-home interview conducted for

only a sample of these students. Out of the 172 schools, 16 are the so-called saturated

schools, where all students who answered the in-school questionnaire were selected for the

in-home interview. The sample of students who answered the Wave I in-home interview was

interviewed again during the 1995-1996 school year (Wave II), another time in 2001-2002

(Wave III), again in 2007-2008 (Wave IV), and most recently in 2016-2018 (Wave V).

For my empirical analysis, information on educational attainment is taken from the Wave

IV data, when respondents were between 26-32 years old. They were asked to give their

highest level of education achieved by the time of the interview. As in Cools et al. (2022),

I define a dummy variable for bachelor’s degree attainment equal to 1 if the respondent

had obtained a four-year college degree or more and 0 otherwise. Some other secondary

outcome variables are also used in this analysis. These include Wave II information on

students’ grades, willingness and confidence in going to college, and self-assessment of their

intelligence compared to their peers.

Friendship information comes from the Wave I in-home interviews. During the interview,

students were asked to nominate at most five of their female friends and five of their male

friends from their school’s and the sister school’s roaster. Students’ pre-treatment informa-

tion comes from Wave I. This includes background information on the students and their

parents. On the students’ side, I use data on their gender, age, race, whether they were born

in the US, and their PVT score.24 On the parents’ side, I use data on the residential mother

and father’s education level, whether they worked for pay for more than 10 hours per week

at the time interview was conducted, whether they were born in the U.S., and the annual

family income. The exact definitions of all variables are detailed in Table 19, along with the

definitions used in Cools et al. (2022). In order to compare the results with the CFP paper,

Carolina at Chapel Hill. The Add Health Parent Study/Parents (2015-2017) data collection was funded by
a grant from the National Institute on Aging (RO1AG042794) to Duke University, V. Joseph Hotz (PI) and
the Carolina Population Center at the University of North Carolina at Chapel Hill, Kathleen Mullan Harris
(PI).

24A Picture Vocabulary Test (PVT) was administered by the interviewer during the Wave I in-home
interview. PVT measures an individual’s verbal ability.
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I further restrict the data following their procedure, keeping only those in grades 7-12 during

Wave I, except those with less than 20 students.

6.2 Estimation of propensity scores and the linking effects

The first step of estimating the linking effect is to estimate the propensity scores from the

adjacency matrix. When students were interviewed for the AddHealth data, they were only

allowed to nominate their friends within the same school. This means that for each school

s, we have a network represented by an adjacency matrix Ds with Ns nodes. The Ns nodes

include every student on the school roaster. In each school, a sample of ns students who

were also in the school roaster was selected for the in-home interview and therefore asked to

nominate their friends from the NS students listed on the roaster. For each i of the sampled

students and each student j on the school roaster, Dj
s,i is recorded as 1 if i nominates j as

their friend and is recorded as 0 if j is nominated by i as a friend. I remove any column j of

the adjacency matrix Ds if j was not nominated by any sampled student i. For the Ns − ns

students who were not sampled for the in-home interview, their adjacency matrix entries

are missing, which prevents us from estimating their propensity scores of linking. This is

not a problem for our analysis for two reasons. First, since they were not selected for the

in-home interviews, their information on outcome variables would also be missing, meaning

they wouldn’t have been included in the analysis anyway. Second, the propensity scores of

linking of the sampled students can still be estimated through factor models, even though

they can no longer be estimated by graphon estimators. The factor model I use for this

empirical analysis is the same as the one specified in (8).

After the propensity scores of linking are estimated for all the sampled students in each

school, we are ready to estimate the linking effects of interest. In this empirical analysis, I

use the augmented inverse probability weighting estimator (AIPW). Specifically, I run the

propensity score re-weighted pairwise regression specified in (18) for the characterization of

the link receivers and the link senders of interest, for example, female link receivers and male

high-achieving senders.

Ys,i = βs,0 + βs,1D
s,j
s,i + ρsXs,i + ϵs,js,i (18)
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where Ys,i and Xs,i are respectively the outcome and covariates of student i in school s. Dj
s,i

is a dummy variable that equals to 1 if student i nominates j as their friend where both i

and j are from school s. Each pairwise observation is weighted according to its propensity of

linking and its linking status. Here I estimate the treatment effect of treated (ATT), which

means the weights are generated according to (19).

ws,j
s,i =


1 if Ds,j

s,i = 1

ps,js,i

1−ps,js,i

if Ds,j
s,i = 0

(19)

where ws,j
s,i is the pairwise weight and ps,js,i is the estimated propensity of linking from j to

i. Note that using the propensity score weighted regressions to estimate the linking effects

does not mean we assume the true effect is linear and additive with respect to the covariates.

Just like in traditional causal inference, regressions are only used as a way of estimation.

Finally, I get the overall linking effect across schools β1 by weighting the school linking effect

by the number of observed links in that school.25

Wang and Blei (2019a) suggested using a test statistics to assess the adequacy of propen-

sity score estimation. This test statistics is based on the idea that well-estimated propensity

scores should have good predictive power for the validation data. Following their procedure,

our estimated propensity scores for each school network pass the test and perform well.

Traditionally, the adequacy of the estimated propensity scores is assessed by balance tests,

where the difference in pre-treatment variables between the treated group and the control

group is calculated using the propensity score-adjusted sample. This method is not directly

applicable to our context. First of all, since each link sender is associated with a unique

treatment, ideally, we would compare for each link sender the pre-treatment characteristics

of the students who were treated by this link sender and the students who were not treated

by this link sender. Because in our networks of finite size, each link sender only has a few

treated students, this comparison suffers from finite sample bias. We could, however, average

the differences in pre-treatment variables between treated and control students over all link

25I weight it by the number of observed links because the estimand is ATT. If we are interested in ATE,
the weight should be the number of all potential links.
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senders. The second issue is that our propensity scores are based on the unobserved sufficient

confounders that do not correspond directly to any observed variables. Since the propensity

scores were not estimated using any observed pre-treatment variables, there is no guarantee

that any selected pre-treatment variable will be balanced across the treated and the control

groups. Nonetheless, we could still evaluate the balance for some variables we believe are

part of the confounders.

Balance tests could be conducted by running a pairwise regression similar to (18), except

that the covariates will become the outcome variables. Table 3 shows the result of a balance

test for some pre-treatment variables. According to Currarini et al. (2009) race is a strong

predictor of friendship formation, and (Carrell et al., 2013) suggests the same for ability.

Table 3 shows that the balance for the ability variables (column 3 and column 4) and the

race variable of being black are improved.

Table 3: Balance test

Pre-treatment variable:

Male US born PVT PVT + M C+ F C + Income Age M nHH F nHH Black Hispanic

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Original 0.002 −0.002∗∗∗ 0.688∗∗∗ 0.025∗∗∗ 0.023∗∗∗ 0.022∗∗∗ 0.037∗∗∗ −0.993∗∗∗ −0.004∗∗∗ −0.006∗∗∗ −0.014∗∗∗ −0.001
(0.002) (0.001) (0.041) (0.002) (0.001) (0.001) (0.003) (0.043) (0.001) (0.001) (0.001) (0.001)

AIPW 0.001 −0.001 0.449∗∗∗ 0.016∗∗∗ 0.017∗∗∗ 0.012∗∗∗ 0.036∗∗∗ −0.637∗∗∗ −0.002∗∗ −0.006∗∗∗ −0.008∗∗∗ 0.001
(0.002) (0.001) (0.044) (0.002) (0.001) (0.002) (0.003) (0.048) (0.001) (0.001) (0.001) (0.001)

Note: This table reports the average differences between the treated and the control across all link senders. The first row
is the balance test for the origianl sample. The second row is the balance test for the sample re-weighted by the propensity
scores according to inverse probability weighting method. Standard errors are estimated with subsample bootstrapping with
900 subsamples drawn randomly. At each bootstrap, 90% of the individuals (nodes) within each school are sampled without
replacement. The pre-treatment variables from column 1 to column 12 are: whether the ego is male, born in US, their PVT
score, whether their PVT score is above the population median, whether their mother has colllege degree or above, whether their
father has colllege degree or above, their annual family income (log), their age in months, whether their mother is not in the
household, whether their father is not in the household, whether the respondent is black, and whether the respondent is hispanic.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

6.3 Results

Table 4 reports the estimated effects of friendships from different types of link sender on

bachelor’s degree attainment (column 1) and some intermediate outcomes recorded during

Wave II interviews. Each row corresponds to a characterization of the friendship based on

the character of the receiver and the sender. The receiver characteristic is shown before the

underbar “ ”, and the sender characteristic is shown after. “F” and “M” refer to the gender
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Table 4: Effect of friendship on bachelor’s degree attainment and confidence

Dependent variable:

Bachelor’s Degree (p.p) Want (p.p) Will (p.p) Intelligence (p.p)

(1) (2) (3) (4)

F FL 0.354∗ −0.171 −0.819∗∗∗ −0.389
(0.191) (0.241) (0.227) (0.242)

F ML 0.336 −0.361 −0.797∗∗ −0.602
(0.313) (0.381) (0.373) (0.439)

F FH 1.877 2.377∗ 0.737 1.364
(1.262) (1.245) (1.062) (1.345)

F MH 2.981∗∗∗ 1.602 2.370∗∗∗ 3.748∗∗∗

(0.978) (1.116) (0.858) (1.324)

M FL −0.041 0.144 −0.026 −0.623∗

(0.279) (0.269) (0.270) (0.336)

M ML −0.068 0.058 −0.553∗∗ −0.816∗∗∗

(0.227) (0.204) (0.247) (0.253)

M FH 2.801 0.930 −1.919 −1.652
(1.906) (1.818) (1.764) (1.773)

M MH 4.645∗∗∗ 1.361 0.821 4.539∗∗∗

(1.526) (1.544) (1.314) (1.153)

Note: This table reports the estimated effects of high school friendship on students’ bachelor’s degree attainment (column 1),
and their intermediate outcomes (column 2-4). The dependent variable in Column (2) is a dummy variable recording whether
the student reported a scale 5 (1 is the lowest and 5 is the highest) on the the extent of how much they want to go to college
(Wave II). The dependent variable in Column (3) is a dummy variable recording whether the student reported a scale 5 (1 is the
lowest and 5 is the highest) on the likelihood that they will go to college (Wave II). The dependent variable in Column (4) is a
dummy variable recording whether the student reported a scale 5 or 6 (1 is the lowest and 6 is the highest) on their intelligence
compared to other people of their age (Wave II). The estimands are all ATT. Each row corresponds to a characterisation of
the friendship, based on the character of the receiver and the sender. Receiver characteristics is shown before the underbar ,
and sender characteristics is shown after. “F” and “M” are used to refer to the gender female and male respectively. “H” and
“L” are used to refer to whether the individual is a high flyer or non-high flyer (low flyer) respectively. For example, “F FL”
means the linking effect is estimated for female link receivers and female non-high flyer link senders. The regressions reported
in all columns include cohort dummies, whether the student was born in the US, their PVT score, whether their PVT score
is above the population median PVT score, whether their mother’s and father’s highest degree is high school, some college,
college, or post college, whether their mother’s and father’s highest education level is missing, the student’s log family income,
whether family is missing, the age of the student during Wave I, whether the student’s mother and father were in the household,
dummies for whether the student is black, hispanic, white, asian and indian. Standard errors are estimated with subsample
bootstrapping with 900 subsamples drawn randomly. At each bootstrap, 90% of the individuals (nodes) within each school are
sampled without replacement. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 5: Heterogeneous effects of friendship on bachelor’s degree attainment and intelligence

Dependent variable:

Bachelor’s degree Intelligence

PVT Median - PVT Median + PVT Median - PVT Median +

(1) (2) (3) (4)

F FL 0.510 −0.347 −1.121∗∗∗ −0.026
(0.362) (0.424) (0.429) (0.451)

F ML 0.818 −1.038∗ −0.139 −1.823∗∗

(0.634) (0.540) (0.836) (0.903)

F FH 5.912∗∗∗ −0.782 6.552∗∗ −1.115
(2.294) (2.656) (3.054) (2.531)

F MH 3.649∗ 0.492 10.283∗∗∗ −2.967
(2.084) (1.952) (2.585) (2.620)

M FL −0.780 0.329 −1.916∗∗ 1.550∗∗∗

(0.649) (0.581) (0.802) (0.568)

M ML 0.670 −0.260 −2.051∗∗∗ 0.736
(0.451) (0.423) (0.474) (0.462)

M FH 0.305 3.377 −5.573 −0.074
(5.056) (2.160) (3.607) (2.236)

M MH 4.231 8.267∗∗∗ −2.164 11.954∗∗∗

(3.005) (2.511) (2.911) (2.225)

Note: This table reports the estimated heterogeneous effects of high school friendship on students’ bachelor’s degree attainment
and self-assessed intelligence. Column (1) and (3) reports results for ego whose PVT score is below population median PVT
score. Column (2) and (4) reports results for ego whose PVT score is above population median PVT score. The estimands are
all ATT. Each row corresponds to a characterisation of the friendship, based on the character of the receiver and the sender.
Receiver characteristics is shown before the underbar , and sender characteristics is shown after. “F” and “M” are used to
refer to the gender female and male respectively. “H” and “L” are used to refer to whether the individual is a high flyer or
non-high flyer (low flyer) respectively. For example, “F FL” means the linking effect is estimated for female link receivers and
female non-high flyer link senders. The regressions reported in all columns include cohort dummies, whether the student was
born in the US, their PVT score, whether their PVT score is above the population median PVT score, whether their mother’s
and father’s highest degree is high school, some college, college, or post college, whether their mother’s and father’s highest
education level is missing, the student’s log family income, whether family is missing, the age of the student during Wave I,
whether the student’s mother and father were in the household, dummies for whether the student is black, hispanic, white,
asian and indian. Standard errors are estimated with subsample bootstrapping with 900 subsamples drawn randomly. At each
bootstrap, 90% of the individuals (nodes) within each school are sampled without replacement. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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female and male, respectively. “H” and “L” refer to whether the individual is a high achiever

or non-high achiever (low achiever), respectively. For example, “F FL” means the linking

effect is estimated for female link receivers and female non-high achiever link senders.

Table 4 shows a nearly 3 p.p increase in female students’ likelihood of obtaining a bache-

lor’s degree by having an additional male high-achieving friend. For male students, an extra

male high-achieving friend means an increase of 4.6 p.p in the probability of graduating from

college. Looking at the last three columns of the table, it appearss that the positive effect

of a male high-achieving friend on both female and male students could be attributed to an

increase in their confidence. In particular, an additional male high-achieving friend increases

the probability that a female student reports having a high likelihood of going to college

and being more intelligent than their same-age peers during the Wave II interview, one year

after friendship information was recorded. As for male students, their self-assessment of

being more intelligent than their same-age peers is also increased.

Female egos are also slightly more likely to graduate from college when they have an

additional female friend who is not a high achiever. However, this effect disappears if we

separately look at the effect on low-ability and high-ability female students. As shown in

Table 5, estimates for both ability groups of female students are not significantly different

from 0. Moreover, the positive effect of male high achiever friends seems to only exist for low-

ability female students and high-ability male students, with an increase in the probability

of going to college by about 3.6 p.p and 8.3 p.p, respectively. These positive effects are also

found in their self-assessment of being more intelligent than their peers. However, is this

positive impact on self-assessment of intelligence due to a confidence boost or an increase in

academic performance? To answer this question, I look at the effect of friendship on egos’

grades during Wave II. Table 6 and Table 7 show that across all four academic subjects,

none of the grades of low-ability female students were increased by having an additional male

high-achieving friend. As for male high-ability students, their English grade was improved

by 0.196 points on average (lowest 1, highest 5) by having an additional male high-achieving

friend, but none of the grades of the other subjects were improved.
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Table 6: Heterogeneous effects of friendship on English and Math grades

Dependent variable:

English grade Math grade

PVT Median - PVT Median + PVT Median - PVT Median +

(1) (2) (3) (4)

F FL −0.004 −0.002 0.002 −0.007
(0.007) (0.008) (0.007) (0.008)

F ML −0.035∗∗ 0.037∗∗ 0.002 −0.020
(0.016) (0.017) (0.014) (0.019)

F FH 0.050 0.014 0.232∗∗∗ 0.022
(0.045) (0.028) (0.053) (0.025)

F MH −0.025 0.050 0.039 −0.012
(0.036) (0.032) (0.037) (0.041)

M FL 0.021 −0.006 −0.044∗∗ −0.008
(0.015) (0.010) (0.019) (0.008)

M ML 0.009 0.00001 −0.025∗∗∗ 0.004
(0.008) (0.006) (0.009) (0.008)

M FH 0.159∗∗ −0.00003 0.080∗ 0.061
(0.079) (0.067) (0.043) (0.045)

M MH −0.039 0.196∗∗∗ 0.060 0.002
(0.055) (0.053) (0.075) (0.043)

Note: This table reports the estimated heterogeneous effects of high school friendship on students English and Math grades
(Wave II). Column (1) and (3) reports results for ego whose PVT score is below population median PVT score. Column (2)
and (4) reports results for ego whose PVT score is above population median PVT score. The estimands are all ATT. Each row
corresponds to a characterisation of the friendship, based on the character of the receiver and the sender. Receiver characteristics
is shown before the underbar , and sender characteristics is shown after. “F” and “M” are used to refer to the gender female
and male respectively. “H” and “L” are used to refer to whether the individual is a high flyer or non-high flyer (low flyer)
respectively. For example, “F FL” means the linking effect is estimated for female link receivers and female non-high flyer link
senders. The regressions reported in all columns include cohort dummies, whether the student was born in the US, their PVT
score, whether their PVT score is above the population median PVT score, whether their mother’s and father’s highest degree
is high school, some college, college, or post college, whether their mother’s and father’s highest education level is missing, the
student’s log family income, whether family is missing, the age of the student during Wave I, whether the student’s mother
and father were in the household, dummies for whether the student is black, hispanic, white, asian and indian. Standard errors
are estimated with subsample bootstrapping with 900 subsamples drawn randomly. At each bootstrap, 90% of the individuals
(nodes) within each school are sampled without replacement. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 7: Heterogeneous effects of friendship on History and Science grades

Dependent variable:

History grade Science grade

PVT Median - PVT Median + PVT Median - PVT Median +

(1) (2) (3) (4)

F FL −0.008 −0.013 −0.025∗∗∗ −0.011
(0.006) (0.008) (0.007) (0.013)

F ML 0.046∗∗∗ 0.014 −0.014 0.022
(0.016) (0.013) (0.017) (0.018)

F FH 0.081 −0.025 0.142∗∗ −0.030
(0.058) (0.032) (0.062) (0.026)

F MH −0.028 0.104∗∗∗ 0.007 0.010
(0.041) (0.037) (0.046) (0.026)

M FL −0.035 0.030∗∗∗ −0.042∗∗ 0.007
(0.024) (0.008) (0.016) (0.008)

M ML −0.025∗∗∗ −0.014∗ 0.010 −0.002
(0.008) (0.008) (0.013) (0.006)

M FH 0.091 −0.129∗∗ 0.086∗∗ −0.130∗∗

(0.059) (0.051) (0.042) (0.052)

M MH −0.093 0.037 0.004 −0.033
(0.061) (0.037) (0.078) (0.036)

Note: This table reports the estimated heterogeneous effects of high school friendship on students History and Science grades
(Wave II). Column (1) and (3) reports results for ego whose PVT score is below population median PVT score. Column (2)
and (4) reports results for ego whose PVT score is above population median PVT score. The estimands are all ATT. Each row
corresponds to a characterisation of the friendship, based on the character of the receiver and the sender. Receiver characteristics
is shown before the underbar , and sender characteristics is shown after. “F” and “M” are used to refer to the gender female
and male respectively. “H” and “L” are used to refer to whether the individual is a high flyer or non-high flyer (low flyer)
respectively. For example, “F FL” means the linking effect is estimated for female link receivers and female non-high flyer link
senders. The regressions reported in all columns include cohort dummies, whether the student was born in the US, their PVT
score, whether their PVT score is above the population median PVT score, whether their mother’s and father’s highest degree
is high school, some college, college, or post college, whether their mother’s and father’s highest education level is missing, the
student’s log family income, whether family is missing, the age of the student during Wave I, whether the student’s mother
and father were in the household, dummies for whether the student is black, hispanic, white, asian and indian. Standard errors
are estimated with subsample bootstrapping with 900 subsamples drawn randomly. At each bootstrap, 90% of the individuals
(nodes) within each school are sampled without replacement. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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7 Conclusion

By looking at the problem of peer influence through the causality lense and thereby bridging

the multiple causal inference literature and the network analysis literature, this paper shows

that the network endogeneity problem tormenting the study of the linking effect can be solved

under a set of assumptions that are easy to satisfy for many common networks. However,

this is not to say that the solution can be used for any network. In some situations, these

assumptions could fail, and alternative solutions must be used. For example, the assumption

of doubly individualistic assignment mechanism fails in the case of the marriage network or

the roommate network, where some links are direct causes of other links. In these cases, we

could resort to explicit network formation modelling.

Moreover, the definition of the linking effect makes it clear that nodal characteristics are

not the treatment but the variables that could be used to define effect heterogeneity. This

means we could adapt the machine learning techniques developed to study heterogeneous

effects to the case of linking effects. Finally, we could extend this paper by relaxing the

L-SUTVA assumption and defining more sophisticated estimands.
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A Extensions

A.1 Treatment defined over all links

Suppose we are interested in the comparison between two configurations, such as c1 and c2.

A configuration is a rule C that the treatment vector has to satisfy. For example, c1 could be

2 female and 1 male and c2 be 1 female and 2 male. Assume L-SUTVA holds, for any node

i let us denote the set of treatments that satisfies configuration c as Dc
i = {Di|C(Di) = c},

whereDi = (Di1, ...Dij, ..., DiN). For any dc1 ∈ Dc1 and dc2 ∈ Dc2 . we can define an estimand

mc1,c2
i :

mdc1 ,dc2
i = Yi(d

c1)− Yi(d
c2)

For any configuration c, use |Dc| to denote the number of elements in the set Dc and the

expectation Ec as the expectation over the set Dc with uniform probability. Average over

the set of treatments that satisfy the configuration rules, we can define the treatment effect

of configuration c1 v.s. c2 on node i as:

mc1,c2
i = Ec1 [Yi(d

c1)]− Ec2 [Yi(d
c2)]

:=
1

|Dc1|
∑

dc1∈Dc1

Yi(d
c1)− 1

|Dc2|
∑

dc2∈Dc2

Yi(d
c2)

Finally, by averaging over the set of egos, we can easily define the average treatment

effect of configuration c1 v.s. c2 as:

mc1,c2 = Ei

[
Ec1 [Yi(d

c1)]− Ec2 [Yi(d
c2)]

]
:=

1

N

∑
i=1,...,N

( 1

|Dc1 |
∑

dc1∈Dc1

Yi(d
c1)− 1

|Dc2|
∑

dc2∈Dc2

Yi(d
c2)

)
Lemma 3 (Unconfoundedness when treatment is defined over all links).

Pr(Di = dc|Y pot
i ,Ui,V1, ...,VN) = Pr(Di = dc|Ui,V1, ...,VN)

47



and

Pr(Di = dc|Y pot
i , e(Ui,V1), ..., e(Ui,VN)) = Pr(Di = dc|e(Ui,V1), ..., e(Ui,VN))

Proof. The first half of the proof is identical to that of Proposition ??. For the last part,

instead we have

Pr(Di = dc|U1, ...,UN ,V1, ...,VN ,Y
pot
i )

=Pr(Di = dc|U1, ...,UN ,V1, ...,VN)

=Pr(Di = dc|Ui,V1, ...,VN)

The first equation holds because we have ruled out any confounders that affect any of the

links, which means there are no confounders to affect all of i’s links. The second equation

comes from equation (2).

Assumption 6 (Overlap for all links). 0 < Pr(Di = dc1|Ui,V1, ...,VN) < 1

Proposition 2. Under assumption 1,2,3 and 6, mc1,c2 is identified:

mc1,c2 = E
[
Ei

[
Edc1 [Yi(Di = dc1)|e(Ui,V1), ..., e(Ui,VN),Di = dc1 ]

]]
− E

[
Ei

[
Edc2 [Yi(Di = dc2)|e(Ui,V1), ..., e(Ui,VN),Di = dc2 ]

]]

Proposition (2) is proved in Section D.4.

Notice here in order to estimate this estimand, we need to condition not just on the

single pairwise propensity score e(Ui,Vj), but rather on the vector of propensity scores

e(Ui,V1), ..., e(Ui,VN). To gain some intuition, first recall that in the main analysis, the

hypothetical intervention was on a single pair, and the estimand is the average of potential

outcomes under repeated hypothetical interventions over different pairs each time. Here the

hypothetical intervention, however, is on all the relationships of node i, thus the need to

condition on the propensity scores of all relationships being formed.

Finally, note that as N goes to infinity, the overlap condition will fail to hold. To see

why, write the generalised propensity score as the product of individual pairwise propensity
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score:

Pr(Di = dc1|Ui,V1, ...,VN)

=
N∏
j=1

(
Pr(Dj

i = 1|Ui,Vj)
)dc1i (

1− Pr(Dj
i = 1|Ui,Vj)

)1−d
c1
i

Since 0 < Pr(Dj
i = 1|Ui,Vj) < 1, this product goes to 0 as N goes to infinity, causing the

overlap condition to fail.

A.2 Alternative estimands

In the main analysis the treatment effect of sender-j relationship on receiver i’s potential

outcome is defined as the following contrast of potential outcomes:

τ ji = Yi(D
j
i = 1,D−j

i = d̄−j
i )− Yi(D

j
i = 0,D−j

i = d̄−j
i )

where all the non-sender-j relationships of receiver i are fixed at their observed level. This

is only one of the many ways we can define the pair level estimand. In fact, for any i, j and

d−j
i we could define

τ̃ ji (d
−j
i ) = Yi(D

j
i = 1,D−j

i = d−j
i )− Yi(D

j
i = 0,D−j

i = d−j
i ) (20)

In this case, we could define an average linking effect for link receivers with characteristic

Ri = r and link senders with characteristic Aj = a by averaging the pair level treatment

effects over the probability distribution of the linking status of i’s other (than j) relationships:

τ̃ar = E(i,j):Ri=r,Aj=a

∑
d−j
i ∈Dj

τ̃ ji (d
−j
i )Pr(D−j

i = d−j
i ) (21)

where Dj = ∪id
−j
i and i is a representative node randomly drawn from the population of

senders satisfying Ri = r.26 Next I will prove that τ̃ar is identified.

26This estimand is similar to the kind of estimands usually defined in the literature of treatment interfer-
ence, e.g. Forastiere et al. (2021). The difference is that in the treatment inference literature the “direct” or
main estimand is defined by averaging over the treatments of interfering units, while here we average over
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Proof.

E(i,j):Ri=r,Aj=a

[ ∑
d−j
i ∈Dj

Yi(D
j
i = 1,D−j

i = d−j
i )Pr(D−j

i = d−j
i )

]
= E

[
E(i,j):Ri=r,Aj=a

[ ∑
d−j
i ∈Dj

Yi(D
j
i = 1,D−j

i = d−j
i )Pr(D−j

i = d−j
i )|Ui,V1, ...,VN

]]
= E(i,j):Ri=r,Aj=a

[ ∑
d−j
i ∈Dj

E
[
Yi(D

j
i = 1,D−j

i = d−j
i )Pr(D−j

i = d−j
i )|Ui,V1, ...,VN

]]
= E(i,j):Ri=r,Aj=a

[ ∑
d−j
i ∈Dj

E
[
Yi(D

j
i = 1,D−j

i = d−j
i )|Ui,V1, ...,VN

]
× Pr(D−j

i = d−j
i |Ui,V1, ...,VN)

]
= E(i,j):Ri=r,Aj=a

[ ∑
d−j
i ∈Dj

E
[
Yi(D

j
i = 1,D−j

i = d−j
i )|Ui,V1, ...,VN, D

j
i = 1,D−j

i = d−j
i

]
× Pr(D−j

i = d−j
i |Ui,V1, ...,VN)

]
= E(i,j):Ri=r,Aj=a

[ ∑
d−j
i ∈Dj

E
[
Y obs
i |Ui,V1, ...,VN, D

j
i = 1,D−j

i = d−j
i

]
× Pr(D−j

i = d−j
i |Ui,V1, ...,VN)

]
The first equation comes from the law of iterated expectations, the second equation is due to

linearity of expectations, the third equation is due to the independence between potential out-

come and linking probability conditional on (Ui,V1, ...,VN) (same d-separation argument

as before), the fourth equation comes from the unconfoundedness of Yi(D
j
i = 1,D−j

i = d−j
i )

conditional on (Ui,V1, ...,VN) (3), and the fifth equation holds because when Dj
i = 1 and

D−j
i = d−j

i , Yi(D
j
i = 1,D−j

i = d−j
i ) = Y obs

i . This means if (Ui,V1, ...,VN) were observed,

or equivalently if {e(Ui,V1), ..., e(Ui,VN)} were observed,

E(i,j):Ri=r,Aj=a

[ ∑
d−j
i ∈Dj

Yi(D
j
i = 1,D−j

i = d−j
i )Pr(D−j

i = d−j
i )

]
the non-focal links of the same receiver.
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is identified, and can be estimated with observed data. The same proof holds for

E(i,j):Ri=r,Aj=a

[ ∑
d−j
i ∈Dj

Yi(D
j
i = 0,D−j

i = d−j
i )Pr(D−j

i = d−j
i )

]
.

This means estimand τ̃ar is identified.

A.3 Other types of linking effect to explore in the future

A.3.1 Indirect linking effect

As shown in Figure 3, we can define an indirect effect that contrasts i’s potential outcome

when some link sender j is linked to one of i’s existing direct peer and its potential outcome

when j is not linked to one of i’s existing direct peer, while keeping i’s existing peers fixed

at the realised value. This requires the relaxation of L-SUTVA and is similar to the study

of spillover effects in traditional setting (Forastiere et al., 2021).

Figure 3: Indirect linking effect
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A.3.2 Triangle reinforced linking effect

The triangle reinforced linking effect contrasts i’s potential outcome when its direct peer j

also sends a link to one of i’s other existing direct peer and its potential outcome when j is not

linked to one of i’s existing direct peer, while keeping i’s existing peers fixed at the realised

value. This could be used to study whether direct linking effect could be reinforced by an

additional indirect link. If the underlying mechanism for the peer effect is information flow,

then triangle reinforced effect shouldn’t exist. It also requires the relaxation of L-SUTVA to

allow for interference.

Figure 4: Triangle reinforced linking effect

A.4 Small networks

When networks are small, the estimation of propensity scores might be difficult, even if we

have a large number of such small networks. This is because the estimation of propensity

score is based on each single network. If the individual network is small, there is very little

information for the inference of sufficient confounders and their propensity scores.

In this case, we could still make causal discovery based on additional assumptions. The
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idea is to assume that the effective treatment is some characteristic of the node, instead of

the identity of the node. Let Y g
i (·) denote the potential outcome of link receiver i in network

g, this assumption is formalised as Assumption 7.

Assumption 7. For some function l : {0, 1}N → RM

Y g
i (Di1, Di2, ..., Din) = Y g

i (l(Di1, Di2, ..., DiN))

= Y g
i (l1, ..., lM)

Function l(·) defines the effective treatment. For example if l(·) =
∑

j=1,...,n DijXj where

X is a dummy variable, Assumption 7 means i’s links affect i’s potential outcome only

through the total number of links with characteristics X. Similarly, if l(·) =
∑

j=1,...,n DijXj∑
j=1,...,n Dij

,

Assumption 7 means i’s links affect i’s potential outcome only through the share of i’s

links with characteristics X. Note that here we do not assume that the potential outcome

is a linear function of l(·) as in the linear-in-means and linear-in-sum models. In both

examples, we have M = 1, but this is not necessary. For example, l(Di1, Di2, ..., DiN) =

(
∑

j=1,...,n DijX
1
j ,
∑

j=1,...,n DijX
2
j ) means the effective treatment is the total number of links

with characteristics X1 and the total number of links with characteristics X2.

Next I show that under Assumption 7, causal identification and estimation of linking

effect could be achieved by inferring sufficient confounders that render the distribution of

effective treatment conditionally independent, as long as M ≥ 2.

Definition A.1. Let N g be the number of nodes in network g, and N =
∑

g=1N
g. o1, ..., oN

and q1, ..., qM are two vectors of random variables that satisfy the following condition:

Pr(li1, ..., liM |oi, q1, ..., qM) =
M∏

m=1

Pr(lim|oi, qm) i = 1, ..., N

Effectively li1, ..., liM is the multiple treatment vector of link receiver i, and since M is

a fixed number, we are in the standard case studied in Wang and Blei (2019a). Therefore

o1, ..., oN and q1, ..., qM are sufficient confounders in the sense that after conditioning on

them, treatment (li1, ..., liM) is independent of the potential outcome Yi(li1, ..., liM).

Assumption 7 makes it possible to identify and estimate linking effects when networks
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are small. The intuition is that since nodes from different networks all share the same set

of possible treatment l1, ..., lM . we could pool the link receivers across networks together to

infer the sufficient confounders and their propensity scores. Note that in this case the esti-

mators from the statistical network analysis literature, such as the neighbourhood smoothing

estimator, won’t work. But the factor models can still be used to estimate the propensity

scores.

Finally, note that if this assumption doesn’t hold, we will get biased causal estimates.

This is because the sufficient confounders are defined as variables that make the suppos-

edly effective treatments conditionally independent. If treatments are in fact at a more

disaggregated level, these sufficient confounders are no long ‘sufficient’.

B Alternative 2nd-step treatment effect estimatiors

As mentioned earlier, the inverse probability weighting estimator described in Section 4.2

is not the only 2nd-step estimator we could use to estimate the linking effect. Two of the

popular ones in the causal inference literature are propensity score matching and propensity

score subclassification. Here I will explain in detail how subclassification works and omit the

details for matching. The case of propensity score matching is similar to subclassification.

The only difference is that instead of dividing pairs into blocks based on similarity of propen-

sity scores, we will find for each pair its M-nearest neighbour(s) in terms of their propensity

scores. As in traditional propensity score matching, we could do both matching with replace-

ment or without replacement. Next I will start with a simple example to illustrate the steps

of subclassfication. Then I will provide formal justification of the subclassfication estimator.

B.1 An example of subclassification estimator

In this example there are 8 link receivers with characteristic R = r (labelled 1 to 8) and 7

link senders with characteristic A = a (labelled a to g). The treatment assignment for the

link receivers is given in Table 8. Here I omit the link receivers with characteristic R ̸= r

and the link senders with characteristic A ̸= a because they are not needed for the estimand

τar . Note that the matrix in Table 8 is not an adjacency matrix itself, but the intersection

of a selection of rows and columns from the underlying adjacency matrix.
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Table 8: Example treatment assignment

a b c d e f g
1 0 0 0 1 0 0 0
2 0 0 1 0 0 1 0
3 1 0 0 1 0 0 0
4 0 0 0 0 0 0 1
5 0 0 1 0 0 0 1
6 1 0 0 0 1 1 0
7 0 0 0 0 0 0 0
8 1 0 1 0 0 0 0

Table 9: Example propensity scores

a b c d e f g
1 0 0.1 0 0.11 0.33 0 0
2 0 0 0.5 0 0 0.33 0.16
3 0.25 0 0 0.67 0 0.25 0
4 0.15 0.33 0 0.33 0.1 0 0.27
5 0 0 0.2 0.2 0 0 0.3
6 0.33 0 0 0 0.6 0.56 0
7 0 0.2 0.3 0 0 0 0.1
8 0.5 0 0.1 0 0.3 0 0

The matrix of propensity scores are shown in Table 9. These propensity scores are

fictional and are only meant for illustration purpose, meaning they are not estimated. The

observed outcomes of the link receivers are: Y1 = Y2 = Y4 = Y7 = 1, and Y3 = Y5 = Y6 =

Y8 = 0.

The main idea of subclassification is that if we divide the estimated propensity scores

into small intervals, or subclasses, units within the same subclass will have similar estimated

propensity scores and therefore can be viewed as having the same potential outcome distri-

butions due to unconfoundedness. Here a unit is a pairwise link. Then, within the same

subclass, the average of the missing potential outcomes for the treated units can be unbias-

edly estimated by the observed outcomes of the control (untreated) units. Going back to the

data above, I divide the propensity scores into three subclasses: b1 = (0, 0.3), b2 = [0.3, 0.5),

b3 = [0.5, 1), with the assumption that uncounfoundedness holds within each subclass. Note

that some pairs have an estimated propensity score of 0, which violates the positivity con-

dition, so I leave them out in the data analysis. This means the estimator is now unbiased

55



for the average effect only for those pairs within positive treatment probability.27

This leads to the classification of link receiver link sender pairs as shown in Table 10.

The estimator is then:

13

13 + 8 + 5

(Y3 + Y5 + Y8 + Y1 + Y4

5
− Y4 + Y1 + Y7 + Y5 + Y4 + Y3 + Y2 + Y7

8

)
+

8

13 + 8 + 5

(Y6 + Y2 + Y5

3
− Y4 + Y7 + Y4 + Y1 + Y8

5

)
+

5

13 + 8 + 5

(Y8 + Y2 + Y3 + Y6

4
− Y7

)
Notice that the outcome of the same link receiver could be used multiple times, such as Y4.

They can appear both in the treated group and the control group, across multiple subclasses

of propensity scores. This is because the propensity score is based on the pair, while the

outcome is based on the link receiver only, and the same link receiver could appear in multiple

pairs.

Note that unconfoundedness given propensity scores doesn’t imply pairs with the same

propensity scores have the same ui, uj. Instead, it means that the treated units and control

unis have the same distribution of ui, uj, and that treated units and and control units have

the same distribution of potential outcomes.

B.2 Subclassification formally

For exposition purpose, let’s focus on the estimand

τ ra = E
[
E(i,j):Ri=r,Aj=a[Y

obs
i |e(Ui,Vj), D

j
i = 1]

]
− E

[
E(i,j):Ri=r,Aj=a[Y

obs
i |e(Ui,Vj), D

j
i = 0]

]
27In fact, in subclassfication analysis, researchers often leave out units with too low or too high propensity

scores, even if they are not exactly 0 or 1. This is because with finite sample, there are often too few treated
units within the subclass of very low propensity scores and two few control units within the subclass of very
high propensity scores.
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Table 10: Subclassification of pairs

(0,0.3) [0.3,0.5) [0.5,1)

Dj
i=1 (3,a) (6,a) (8,a)

(5,c) (2,f) (2,c)
(8,c) (5,g) (3,d)
(1,d) (6,e)
(4,g)

Dj
i=0 (4,a) (4,b) (7,e)

(1,b) (7,c)
(7,b) (4,d)
(5,d) (1,e)
(4,e) (8,e)
(3,f)
(2,g)
(7,g)

number of pairs 13 8 5

Suppose we decide to divide the propensity scores into B subclasses and assume the propen-

sity scores within the same subclass are roughly constant, then τ ra can also be written as

τ ra =
1

B

B∑
b=1

Nb

N
E(i,j):Ri=r,Aj=a[Y

obs
i |(i, j) ∈ b,Dj

i = 1]

− 1

B

B∑
b=1

Nb

N
E(i,j):Ri=r,Aj=a[Y

obs
i |(i, j) ∈ b,Dj

i = 0]

=
1

B

B∑
b=1

τ ra,b

whereNb is the number of (i, j) pairs in subclass b ∈ B, and τ ra,b =
Nb

N
(E(i,j):Ri=r,Aj=a[Y

obs
i |(i, j) ∈

b,Dj
i = 1]−E(i,j):Ri=r,Aj=a[Y

obs
i |(i, j) ∈ b,Dj

i = 0]). To estimate τ ra,b, we can simply compare

the sample mean of the outcomes of the link receiver in treated pairs (Dj
i = 1) and the

sample mean of the outcomes of the link receiver in control pairs (Dj
i = 0) belonging to

the subclass b. Alternatively, we could use linear regressions to estimate τ ra,b for all b ∈ B,

thanks to the equivalence between τ ra,b and βb of the following regression function:

Yi = αb + βbD
j
i + ϵji
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where observation is at the pair level. Within each subclass b, Dj
i is as good as random and

independent of potential outcome. This means E[ϵji |D
j
i ] = 0, and that τ ra,b = βb:

τ ra,b = E(i,j):Ri=r,Aj=a[Y
obs
i |(i, j) ∈ b,Dj

i = 1]− E(i,j):Ri=r,Aj=a[Y
obs
i |(i, j) ∈, Dj

i = 0]

= E(i,j):Ri=r,Aj=a[αb + βb + ϵji |(i, j) ∈ b,Dj
i = 1]− E(i,j):Ri=r,Aj=a[αb + ϵji |(i, j) ∈ b,Dj

i = 0]

= βb

Expressing τ ra,b as a regression coefficient allows the easy incorporation of additional covari-

ates into the analysis. Including pre-treatment predictors of the outcome in the regression

could help reduce the bias coming from the variation of propensity scores within the same

subclass, as well as increasing estimation precision, the same as in the conventional subclas-

sification method Imbens and Rubin (2015).

C Discussion of Assumption 2

C.1 Super Population

We are interested in the super population if the estimands of interest are functions of the

infinite population, for example the contrast in the mean potential outcomes for all units

in the infinite population, including the ones not sampled. Assumption 2 is automatically

satisfied if the sample network D is viewed as constructed by uniform random sampling of

nodes from an infinite super population network with infinite number of nodes, where a link is

recorded in the sample if it exists in the super population network. Under this construction,

the randomness in link formation, or in other words, the assignment mechanism, solely comes

from random sampling.

To see why random node sampling from super population implies Assumption 2, we

proceed in 3 steps. First, based on the definition in Crane (2018), Assumption 2 is equivalent

to D being vertex exchangeable. Second, under the Aldous-Hoover theorem, the equivalence

of the De-Finetti theorem for network data, the distribution of vertex exchangeable network

links can always be represented by some graphon process:

Definition C.1 (Graphon (Crane, 2018)). Function ϕ ∈ Φ : [0, 1] × [0, 1] → [0, 1] has 0
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diagonal. Fix any ϕ ∈ Φ and draw w1, w2, ... i.i.d. Uniform[0,1]. Given w1, w2, ..., assign Dj
i

conditionally independently with probabilities

Pr(Dj
i = 1|w1, w2, ...;ϕ) = ϕ(wi, wj) (22)

This way of constructioning D is called a graphon process.

Therefore random node sampling guarantees that there exists i.i.d. {wi}1≤i≤N such that

Pr(D = d|w1, w2, ..., wN) =
N∏
i=1

N∏
j ̸=i

Pr(Dj
i = dji |wi, wj) (23)

Finally, as the third step let us compare equation (23) to equation (3). We can see the

difference is that among all w that satisfies equation (23), we need the ones with the smallest

σ-algebra, w̃. Then letUi = w̃i andVj = w̃j, Assumption 2 is satisfied. In conclusion, vertex

exchangeabile networks satisfy Assumption 2.

C.2 Finite Population

In Leung (2015)’s network formation model, i’s linking decision could depend on the antic-

ipated network structure. Network nodes simultaneously form directed links to maximise

expected utility given their beliefs about the state of the network. Because the objective

is the expected utility, i’s linking probability will be a function of equilibrium beliefs about

others’ linking decisions, conditioning on the observed attributes of all agents in the network.

For this reason, equilibrium linking decisions are functions of the exogenous attributes only.

As such, the pairwise linking decision can be expressed as

Dj
i = h(Zi, Zj, θij)

where Zi includes both i’s equilibrium beliefs about the the state of the network and i’s

observed exogenous attributes. Observed exogenous attributes are assumed to be common

knowledge. Leung (2015) assumes that θij are unobserved node or pairwise attributes that

are private information and satisfy θij ⊥⊥ θkl for i ̸= k. This allows θij to be correlated with
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θil, which means by just conditioning on Zi and Zj we couldn’t yet write the probability

distribution of the entire network links as a conditionally independent process in the form of

equation (3). But if we partition θij into (v1,i, v2,ij) where v1,i are unobserved shocks to link

formation common to more than one sender j, and v2,ij are mutually independent pairwise

shocks. The idea is that we could always separate out variables that cause correlations

among θij and Vil for j ̸= l, and put them in v1,i. Then

Dj
i = h(Zi, Zj, θij)

becomes

Dj
i = h(Zi, Zj, v1,i, v2,ij) = h̃(Ui,Vj, v2,ij)

where Ui = (Zi, v1,i). Conditioning on Ui,Vj, the probability distribution of network links

then becomes exactly as in equation (3). Therefore, network formation games with network

externalities as specified in Leung (2015) satisfy the individualistic assignment mechanism

sssumption.

D Proofs

D.1 Proof of Lemma 2

Proof. First I show that e(Ui,Vj) is a blancing score:

Pr(Dj
i = 1|Ui,Vj, e(Ui,Vj)) = Pr(Dj

i = 1|e(Ui,Vj))

This is because: LHS:

Pr(Dj
i = 1|Ui,Vj, e(Ui,Vj)) = Pr(Dj

i = 1|Ui,Vj) = e(Ui,Vj)

The first equality holds because e(Ui,Vj) is a function of Ui,Vj, the second equality holds

from the definition of e(Ui,Vj).
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RHS:

Pr(Dj
i = 1|e(Ui,Vj)) = E[Dj

i |e(Ui,Vj)] = E[E[Dj
i |Ui,Vj, e(Ui,Vj)]|e(Ui,Vj)]

= E[E[Dj
i |Ui,Vj]|e(Ui,Vj)] = E[e(Ui,Vj)|e(Ui,Vj)]

= e(Ui,Vj)

Then,

Pr(Dj
i = 1|Y pot

i , e(Ui,Vj))

= E[Dj
i = 1|Y pot

i , e(Ui,Vj)]

= E
[
E[Dj

i = 1|Y pot
i ,Ui,Vj, e(Ui,Vj)]

∣∣Y pot
i , e(Ui,Vj)

]
The inner expectation is equal to E[Dj

i = 1|Ui,Vj, e(Ui,Vj)] by unconfoundedness given

Ui,Vj. And by the balancing property of the propensity score, this is E[Dj
i = 1|e(Ui,Vj)].

Therefore the last expression is

E
[
E[Dj

i = 1|e(Ui,Vj)
∣∣Y pot

i , e(Ui,Vj)
]

= E[Dj
i = 1|e(Ui,Vj)]

= Pr(Dj
i = 1|e(Ui,Vj))
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D.2 Proof of proposition 1

Proof.

τ ra = E(i,j):Ri=r,Aj=a[Yi(D
j
i = 1,D−j

i = d̄−j
i )− Yi(D

j
i = 0,D−j

i = d̄−j
i )]

= E
[
E(i,j):Ri=r,Aj=a[Yi(D

j
i = 1,D−j

i = d̄−j
i )|Ui,Vj]

]
− E

[
E(i,j):Ri=r,Aj=a[Yi(D

j
i = 0,D−j

i = d̄−j
i )|Ui,Vj]

]
= E

[
E(i,j):Ri=r,Aj=a[Yi(D

j
i = 1,D−j

i = d̄−j
i )|Ui,Vj, D

j
i = 1]

]
− E

[
E(i,j):Ri=r,Aj=a[Yi(D

j
i = 0,D−j

i = d̄−j
i )|Ui,Vj, D

j
i = 0]

]
= E

[
E(i,j):Ri=r,Aj=a[Yi(D

j
i = 1,D−j

i = d̄−j
i )|e(Ui,Vj), D

j
i = 1]

]
− E

[
E(i,j):Ri=r,Aj=a[Yi(D

j
i = 0,D−j

i = d̄−j
i )|e(Ui,Vj), D

j
i = 0]

]
= E

[
E(i,j):Ri=r,Aj=a[Y

obs
i |Ui,Vj, D

j
i = 1]

]
− E

[
E(i,j):Ri=r,Aj=a[Y

obs
i |Ui,Vj, D

j
i = 0]

]
= E

[
E(i,j):Ri=r,Aj=a[Y

obs
i |e(Ui,Vj), D

j
i = 1]

]
− E

[
E(i,j):Ri=r,Aj=a[Y

obs
i |e(Ui,Vj), D

j
i = 0]

]
Here the expectations are always over the node sampling distribution. The second equa-

tion is from law of iterated expectations. The third and fourth are from unconfoundedness

given both Ui,Vj and e(Ui,Vj). The fifth and the last equalities are from no multiple

versions of treatment assumption. Since e(Ui,Vj) is identified ∀i, j by Lemma 4, τar is

identified.

D.3 Proof of unbiasedness of IPW estimator

Proof. With slight abuse of notation for simplicity, in the following I will write E(i,j):Ri=r,Aj=a[·]

as E[·].

Here I will only prove that

E
[ 1∑N

i=1Ri = r
· 1∑N

j=1 A
j = a

∑
i:Ri=r

∑
j:Aj=a

Dj
i · Y obs

i

e(Ui,Vj)

]
= E[Yi(D

j
i = 1,D−j

i = d̄−j
i ].
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The case for

E
[ 1∑N

i=1Ri = r
· 1∑N

j=1A
j = a

∑
i:Ri=r

∑
j:Aj=a

(1−Dj
i ) · Y obs

i

1− e(Ui,Vj)

]
= E[Yi(D

j
i = 0,D−j

i = d̄−j
i ]

can be similarly proved.

E
[ 1∑N

i=1 Ri = r
· 1∑N

j=1 A
j = a

∑
i:Ri=r

∑
j:Aj=a

Dj
i · Y obs

i

e(Ui,Vj)

]
=E

[ Y obs
i ·Dj

i

e(Ui,Vj)

]
=E

[Yi(D
j
i = 1,D−j

i = d̄−j
i ) ·Dj

i

e(Ui,Vj)

]
=E

[
E
[Yi(D

j
i = 1,D−j

i = d̄−j
i ) ·Dj

i

e(Ui,Vj)

∣∣Ui,Vj

]]

The first equation is due to i.i.d. sampling of the nodes, the second equation holds because

Y obs
i = Yi(D

j
i = 1,D−j

i = d̄−j
i ) whenDj

i = 1, the third equation is from iterated expectations.

Then the inner expectation can be re-written as

E
[Yi(D

j
i = 1,D−j

i = d̄−j
i ) ·Dj

i

e(Ui,Vj)

∣∣Ui,Vj

]
=
E[Dj

i |Ui,Vj] · E[Yi(D
j
i = 1,D−j

i = d̄−j
i |Ui,Vj]

e(Ui,Vj)

=
e(Ui,Vj) · E[Yi(D

j
i = 1,D−j

i = d̄−j
i |Ui,Vj]

e(Ui,Vj)

=E[Yi(D
j
i = 1,D−j

i = d̄−j
i |Ui,Vj]

where the first equation holds because Dj
i and Yi(D

j
i = 1,D−j

i = d̄−j
i are independent
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conditional on Ui,Vj, by unconfoundedness ??. Therefore

E
[
E
[Yi(D

j
i = 1,D−j

i = d̄−j
i ) ·Dj

i

e(Ui,Vj)

∣∣Ui,Vj

]]
=E

[
E[Yi(D

j
i = 1,D−j

i = d̄−j
i |Ui,Vj]

]
=E[Yi(D

j
i = 1,D−j

i = d̄−j
i ]

D.4 Proof of Proposition 2

Proof. mc1,c2 = Ei

[
Edc1 [Yi(d

c1)]
]
−Ei

[
Edc2 [Yi(d

c2)]
]
. Here I will only prove that Ei

[
Edc1 [Yi(d

c1)]
]

is identified. The identification of Ei

[
Edc2 [Yi(d

c2)]
]
follows similarly.

Ei

[
Edc1 [Yi(d

c1)]
]
= Ei

[
Edc1 [Yi(Di = dc1)]

]
= E

[
Ei

[
Edc1 [Yi(Di = dc1)|Ui,V1, ...,VN ]

]]
= E

[
Ei

[
Edc1 [Yi(Di = dc1)|Ui,V1, ...,VN ,Di = dc1 ]

]]
= E

[
Ei

[
Edc1 [Yi(Di = dc1)|Pr(Di = dc1 |Ui,V1, ...,VN),Di = dc1 ]

]]
= E

[
Ei

[
Edc1 [Yi(Di = dc1)|e(Ui,V1), ..., e(Ui,VN),Di = dc1 ]

]]

The first equation comes from the law of iterated expectations. The second equation follows

the unconfoundedness condition in Lemma 3. The third equation comes from the balancing

property of generalised propensity scores. The last equation holds because

Pr(Di = dc1|Ui,V1, ...,VN)

=
∏
j=1

(
Pr(Dj

i = 1|Ui,Vj)
)dc1i (

1− Pr(Dj
i = 1|Ui,Vj)

)1−d
c1
i

=
∏
j=1

(
e(Ui,Vj)

)dc1i (
1− e(Ui,Vj)

)1−d
c1
i

64



E Additional simulation results

E.1 Details of network formation model g2

The second network link generation process Pr(Dj
i = 1) = g2(Ci, Cj) is a slgihtly more

complicated version of a statistical block model. The linking probabilities are asymmetric,

that is g2(Ci, Cj) ̸= g2(Cj, Ci). For any node i and j, the probability of i receiving a link

from j is in general higher if i) Ci is larger and ii) Cj is slightly higher than Cj. If we

think of C as the ability of the node, this is a model where higher ability nodes receive more

friendships, but only from nodes who are slightly more able than themselves. This might

be because they don’t like people who are less able than them, and admire people who are

more able, but become jealous of people who are too much more able than themselves.

g2 : P
j
i =



0.05 if Ci ∈ [0.1, 0.2) & Cj ∈ (0.2, 0.21]

0.1 if Ci ∈ [0.2, 0.3) & Cj ∈ (0.3, 0.31]

0.15 if Ci ∈ [0.3, 0.4) & Cj ∈ (0.4, 0.41]

0.2 if Ci ∈ [0.4, 0.5) & Cj ∈ (0.5, 0.51], or if, Ci ∈ [0.5, 0.6) & Cj ∈ (0.6, 0.61]

0.25 if Ci ∈ [0.6, 0.7) & Cj ∈ (0.7, 0.71], or if, Ci ∈ [0.7, 0.8) & Cj ∈ (0.8, 0.81]

0.3 if Ci ∈ [0.8, 0.9) & Cj ∈ (0.9, 0.91], or if, Ci ∈ [0.9, 1] & Cj ∈ (0.99, 1]

0.01 if Ci ∈ [a, a+ 0.1) & Cj ∈ [a, a+ 0.1) for a = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8

or if, Ci ∈ [0, 0.1) & Cj ∈ [0, 0.05)

0 otherwise

(24)

F Empirical application supplementary material

65



Table 11: Mean degree distribution for simulated g2 networks

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

N=100 0 0 0 0 0 0.2 0.8 1 1.1 1.9 4.3
N=300 0 0 0.2 1 1 1.5 2 2.6 3.3 4.7 10.2
N=500 0 0.3 1 1.5 2 2.7 3.2 4.1 5.5 7.4 15.7

Note: This table reports the mean degree distribution of the simulated networks. For each size
N=100,300,500, and for each simulated network of that size, I caculate the deciles of the number of links
each link receiver receives, and average over all the 500 simulated networks of that size.
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Table 12: Simulation results for g2

IPW Matching Sub Naive ols

Yb Bias X0

N=100 0.083264 0.096999 0.099578 0.135588
N=300 0.048002 0.084757 0.087946 0.167218
N=500 0.036638 0.088748 0.091242 0.186257

X1

N=100 0.074813 0.087677 0.089541 0.126791
N=300 0.04956 0.086555 0.08927 0.167975
N=500 0.035027 0.085468 0.089596 0.184303

MAE X0

N=100 0.103605 0.134378 0.112983 0.143077
N=300 0.050245 0.085861 0.087946 0.167218
N=500 0.037016 0.088748 0.091242 0.186257

X1

N=100 0.094632 0.114537 0.10228 0.13395
N=300 0.052468 0.087344 0.089483 0.167975
N=500 0.03631 0.085468 0.089596 0.184303

Yc Bias X0

N=100 0.465683 0.529408 0.561574 0.779459
N=300 0.2608 0.470754 0.494971 0.956848
N=500 0.186274 0.526728 0.546989 1.148476

X1

N=100 0.456105 0.536314 0.54596 0.76797
N=300 0.263195 0.482857 0.495973 0.954869
N=500 0.177633 0.512275 0.537143 1.136513

MAE X0

N=100 0.489148 0.601876 0.575155 0.784664
N=300 0.262791 0.470754 0.494971 0.956848
N=500 0.187562 0.526728 0.546989 1.148476

X1

N=100 0.465316 0.555527 0.548736 0.768234
N=300 0.263612 0.482857 0.495973 0.954869
N=500 0.179018 0.512275 0.537143 1.136513

Note: This table reports for the g2 model the bias and the mean absolute error (MAE) of the
inverse probability weighting estimator, the nearest neighbour matching estimator with replace-
ment, the subclassification estimator and the narive ols estimator, compared to the true linking
effects, for link sender with Xj = 0 and Xj = 1 separately. The number of matches for the
matching estimator is 1, the number of subclasses for the subclassification estimator is 8. All the
estimates are for the average treatment effect for the treated.
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Table 13: True Propensity Score vs True Effects for g1

IPW Matching Sub

Yb Bias X0

N=100 -0.00618 0.00017 -0.00134
N=300 0.002273 0.002384 0.006239
N=500 -0.00044 -0.00046 0.004332

X1

N=100 -0.00422 -0.00806 -0.00598
N=300 -0.00232 -0.00379 0.00157
N=500 0.000664 0.00104 0.005368

MAE X0

N=100 0.080231 0.097323 0.073752
N=300 0.026164 0.029931 0.023283
N=500 0.013928 0.018599 0.013309

X1

N=100 0.065956 0.085406 0.061449
N=300 0.025165 0.029701 0.023626
N=500 0.016689 0.018747 0.016217

Yc Bias X0

N=100 0.005795 0.011732 0.04541
N=300 -0.00335 -0.00898 0.026149
N=500 0.000463 -0.00044 0.033232

X1

N=100 -0.02251 -0.05712 -0.01709
N=300 -0.01018 -0.01714 0.018337
N=500 -0.0004 -0.00359 0.031436

MAE X0

N=100 0.259116 0.281393 0.208147
N=300 0.101655 0.104463 0.079084
N=500 0.069394 0.070489 0.056754

X1

N=100 0.219053 0.215143 0.159517
N=300 0.086806 0.088471 0.066411
N=500 0.058299 0.058505 0.049941

Note: This table reports for the g1 model the bias and the mean absolute
error (MAE) of the inverse probability weighting estimator, the nearest
neighbour matching estimator with replacement, and the subclassification
estimator using true peopensity scores, compared to the true linking ef-
fects, for link sender with Xj = 0 and Xj = 1 separately. The number
of matches for the matching estimator is 1, the number of subclasses for
the subclassification estimator is 8. All the estimates are for the average
treatment effect for the treated.
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Table 14: True Propensity Score vs True Effects for g2

IPW Matching Sub

Yb Bias X0

N=100 0.000634 0.000271 0.003285
N=300 -0.00094 0.00024 0.004268
N=500 0.000682 0.000218 0.004587

X1

N=100 -0.00704 -0.01052 -0.00802
N=300 0.000635 -0.00019 0.004349
N=500 -0.00077 -0.00149 0.004058

MAE X0

N=100 0.077348 0.094386 0.067707
N=300 0.02476 0.030613 0.02275
N=500 0.015357 0.019648 0.014188

X1

N=100 0.068187 0.088944 0.063137
N=300 0.024323 0.029334 0.022893
N=500 0.016496 0.017966 0.014982

Yc Bias X0

N=100 0.002911 -0.00577 0.02452
N=300 -0.00701 -0.00254 0.028533
N=500 0.003169 -0.00064 0.031012

X1

N=100 -0.01186 -0.01944 -0.00279
N=300 -0.00522 -0.01368 0.020637
N=500 -0.00502 -0.00856 0.027283

MAE X0

N=100 0.270586 0.274076 0.199427
N=300 0.100294 0.103225 0.080769
N=500 0.068604 0.071309 0.055641

X1

N=100 0.211424 0.224245 0.162451
N=300 0.084764 0.091543 0.068273
N=500 0.062315 0.059699 0.049605

Note: This table reports for the g2 model the bias and the mean absolute
error (MAE) of the inverse probability weighting estimator, the nearest
neighbour matching estimator with replacement, and the subclassification
estimator using true peopensity scores, compared to the true linking ef-
fects, for link sender with Xj = 0 and Xj = 1 separately. The number
of matches for the matching estimator is 1, the number of subclasses for
the subclassification estimator is 8. All the estimates are for the average
treatment effect for the treated.
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Table 15: Using estimated propensity scores vs true propensity scores for g1

IPW Matching Sub

Yb Bias X0

N=100 0.083621 0.096681 0.095233
N=300 0.049644 0.084352 0.085735
N=500 0.033614 0.084658 0.083421

X1

N=100 0.082936 0.102901 0.098823
N=300 0.049853 0.087267 0.086033
N=500 0.033867 0.08433 0.083669

MAE X0

N=100 0.08604 0.13704 0.096486
N=300 0.0501 0.085676 0.085735
N=500 0.033836 0.084672 0.083421

X1

N=100 0.084721 0.124468 0.09916
N=300 0.050546 0.087735 0.086033
N=500 0.034166 0.08433 0.083669

Yc Bias X0

N=100 0.488645 0.579477 0.538106
N=300 0.26446 0.492194 0.47262
N=500 0.172692 0.512657 0.499917

X1

N=100 0.476862 0.591576 0.556474
N=300 0.26786 0.4877 0.475234
N=500 0.17529 0.510615 0.501656

MAE X0

N=100 0.488645 0.635377 0.541816
N=300 0.264799 0.492258 0.47262
N=500 0.172846 0.512657 0.499917

X1

N=100 0.476916 0.619324 0.556625
N=300 0.267956 0.4877 0.475234
N=500 0.175635 0.510615 0.501656

Note: This table reports for the g1 model the bias and the mean absolute
error (MAE) of the inverse probability weighting estimator, the nearest
neighbour matching estimator with replacement, and the subclassification
estimator using factor model estimated propensity scores, compared to the
linking effects estimated using the true propensity socres, for link sender
with Xj = 0 and Xj = 1 separately. The number of matches for the
matching estimator is 1, the number of subclasses for the subclassification
estimator is 8. All the estimates are for the average treatment effect for
the treated.
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Table 16: Using estimated propensity scores vs true propensity scores for g2

IPW Matching Sub

Yb Bias X0

N=100 0.08263 0.096729 0.096293
N=300 0.048945 0.084517 0.083678
N=500 0.035957 0.088529 0.086655

X1

N=100 0.081855 0.098198 0.097559
N=300 0.048925 0.086743 0.084921
N=500 0.035799 0.086957 0.085537

MAE X0

N=100 0.086134 0.138018 0.097608
N=300 0.049154 0.086261 0.083678
N=500 0.036224 0.088529 0.086655

X1

N=100 0.084542 0.120627 0.098128
N=300 0.049115 0.086914 0.084921
N=500 0.036091 0.086957 0.085537

Yc Bias X0

N=100 0.462772 0.535179 0.537054
N=300 0.267808 0.473296 0.466438
N=500 0.183105 0.527369 0.515976

X1

N=100 0.467964 0.555751 0.548748
N=300 0.268415 0.496538 0.475336
N=500 0.182649 0.520831 0.50986

MAE X0

N=100 0.462914 0.601572 0.537354
N=300 0.267808 0.473863 0.466438
N=500 0.183854 0.527369 0.515976

X1

N=100 0.46845 0.574089 0.549009
N=300 0.268415 0.496538 0.475336
N=500 0.182914 0.520831 0.50986

Note: This table reports for the g2 model the bias and the mean absolute
error (MAE) of the inverse probability weighting estimator, the nearest
neighbour matching estimator with replacement, and the subclassification
estimator using factor model estimated propensity scores, compared to the
linking effects estimated using the true propensity socres, for link sender
with Xj = 0 and Xj = 1 separately. The number of matches for the
matching estimator is 1, the number of subclasses for the subclassification
estimator is 8. All the estimates are for the average treatment effect for
the treated.
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Table 17: Matching and Subclassification with increasing matches and subclasses vs True
Effects for g1

Matching Sub

Yb Bias X0

N=100 0.096851 0.093895
N=300 0.088153 0.091161
N=500 0.083725 0.085986

X1

N=100 0.094838 0.092844
N=300 0.082749 0.08666
N=500 0.084929 0.087267

MAE X0

N=100 0.137418 0.111374
N=300 0.088258 0.091161
N=500 0.083725 0.085986

X1

N=100 0.11907 0.103271
N=300 0.082933 0.086674
N=500 0.084929 0.087267

Yc Bias X0

N=100 0.591209 0.583515
N=300 0.483253 0.493814
N=500 0.508767 0.522097

X1

N=100 0.534451 0.539381
N=300 0.467582 0.488238
N=500 0.507616 0.521799

MAE X0

N=100 0.62927 0.595459
N=300 0.483253 0.493814
N=500 0.508767 0.522097

X1

N=100 0.558012 0.542142
N=300 0.467582 0.488238
N=500 0.507616 0.521799

Note: This table reports for the g1 model the bias and the mean absolute error (MAE)
of the nearest neighbour matching estimator with replacement and the subclassification
estimator with factor model estimated propensity scores, compared to the true linking
effects, for link sender with Xj = 0 and Xj = 1 separately. The number of matches for
the matching estimator is 1 for networks with N = 100, 3 for networks with N = 300,
5 for networks with N = 500. The number of subclasses for the subclassification
estimator is 8 for networks with N = 100, 10 for networks with N = 300, 12 for
networks with N = 500. All the estimates are for the average treatment effect for the
treated.
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Table 18: Matching and Subclassification with increasing matches and subclasses vs True
Effects for g2

Matching Sub

Yb Bias X0

N=100 0.096999 0.099578
N=300 0.083618 0.086948
N=500 0.088433 0.089523

X1

N=100 0.087677 0.089541
N=300 0.086064 0.08834
N=500 0.085855 0.087839

MAE X0

N=100 0.134378 0.112983
N=300 0.083826 0.086948
N=500 0.088433 0.089523

X1

N=100 0.114537 0.10228
N=300 0.086486 0.08858
N=500 0.085855 0.087839

Yc Bias X0

N=100 0.529408 0.561574
N=300 0.470578 0.489446
N=500 0.525757 0.535877

X1

N=100 0.536314 0.54596
N=300 0.47555 0.490552
N=500 0.513496 0.526042

MAE X0

N=100 0.601876 0.575155
N=300 0.470578 0.489446
N=500 0.525757 0.535877

X1

N=100 0.555527 0.548736
N=300 0.47555 0.490552
N=500 0.513496 0.526042

Note: This table reports for the g2 model the bias and the mean absolute error (MAE)
of the nearest neighbour matching estimator with replacement and the subclassification
estimator with factor model estimated propensity scores, compared to the true linking
effects, for link sender with Xj = 0 and Xj = 1 separately. The number of matches for
the matching estimator is 1 for networks with N = 100, 3 for networks with N = 300,
5 for networks with N = 500. The number of subclasses for the subclassification
estimator is 8 for networks with N = 100, 10 for networks with N = 300, 12 for
networks with N = 500. All the estimates are for the average treatment effect for the
treated.
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Table 19: Variable definitions for CFP friendship re-analysis

Variable Definition in the original papers Definition in this paper

Post college ed-
ucation for par-
ents

Dummy variable equal to 1 if the respondent reports
that the highest level of education attained by their res-
idential father and residential mother has a post-college
education, and 0 otherwise. If a student either does not
have a residential father/mother or the information is
missing, that parent’s level of education is imputed us-
ing the other parent’s education a.

Same definition. The difference is
that in-home data is used instead.
If the in-home data is missing, in-
school data is used. This is because
for saturated schools, data from in-
home interviews have less missing
values than data from the in-school
survey.

log family in-
come

log of total household income (thousands). If family in-
come is missing, family income is set to the mean value
for the school and a dummy is included for missing fam-
ily income.

Same. In addition, for families with
0 annual family income, their in-
come is replaced with 0.1, in order
for the log income to take real val-
ues.

Grade Grade point average is calculated based on self-reported
student grades in math, science, english, and history
from the Wave I in-home survey where A=4, B=3, C=2,
and D or lower=1.

Same. Note: If the respondent
didn’t take the subject, I code the
grade as missing.

MaleFrac (Fe-
maleFrac) high

They are the fraction of male and female high flyers
(those with at least one post-college parent) in the grade
and school.

Same

Bachelor’s de-
gree

Dummy variable equal to 1 if the respondent has com-
pleted a bachelor’s degree (four-year college) and 0 oth-
erwise.

Same

LFP Dummy variable equal to 1 if the respondent is currently
working at least 10 hours per week, is on sick leave or
temporarily disabled, is on maternity/paternity leave, or
is unemployed and looking for work, and is equal to zero
otherwise.

Same

Ever married Dummy variable equal to one if the respondent resported
they have ever been married

Same

Children Total number of (non-deceased) biological children they
have.

Same

aFor example, if the residential father’s education is missing, but the residential mother has a high-school
education, they impute a value for father post-college by taking the average value of father post-college
among students of the same gender within the school who also have a residential mother with a high-school
education. If there are no students with equivalent mother’s education and non-missing information on
father’s education, they impute father post-college using the value of father post-college among all students
in the school who have a residential mother with a high-school education.
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Table 20: Naive OLS estimates for the effect of friendship

Bachelor’s Degree (p.p) Want (p.p) Will (p.p) Intelligence (p.p)

F FL 0.638∗∗∗ 0.195 −0.109 0.214
(0.163) (0.208) (0.206) (0.209)

F ML 1.150∗∗∗ 0.525 0.284 0.175
(0.342) (0.379) (0.363) (0.441)

F FH 2.984∗∗∗ 4.441∗∗∗ 2.600∗∗ 0.955
(1.118) (0.987) (1.065) (1.699)

F MH 2.052 1.474 1.429 3.451∗∗

(1.435) (1.344) (1.120) (1.741)

M FL 0.473∗ 0.152 0.147 −0.697∗∗

(0.282) (0.272) (0.283) (0.314)

M ML 0.499∗∗ −0.058 −0.253 −0.327
(0.202) (0.189) (0.217) (0.244)

M FH 4.145∗∗ 1.971 −3.514 0.021
(1.777) (2.013) (2.480) (2.833)

M MH 3.262∗∗ 1.765 2.540∗∗ 4.102∗∗∗

(1.561) (1.378) (1.123) (1.145)

Note: This table reports the naive OLS estimated effects of high school friendship on students’ bachelor’s degree attainment
(column 1), and their intermediate outcomes (column 2-4). The dependent variable in Column (2) is a dummy variable recording
whether the student reported a scale 5 (1 is the lowest and 5 is the highest) on the the extent of how much they want to go
to college (Wave II). The dependent variable in Column (3) is a dummy variable recording whether the student reported a
scale 5 (1 is the lowest and 5 is the highest) on the likelihood that they will go to college (Wave II). The dependent variable in
Column (4) is a dummy variable recording whether the student reported a scale 5 or 6 (1 is the lowest and 6 is the highest) on
their intelligence compared to other people of their age (Wave II). Each row corresponds to a characterisation of the friendship,
based on the character of the receiver and the sender. Receiver characteristics is shown before the underbar , and sender
characteristics is shown after. “F” and “M” are used to refer to the gender female and male respectively. “H” and “L” are
used to refer to whether the individual is a high flyer or non-high flyer (low flyer) respectively. For example, “F FL” means
the linking effect is estimated for female link receivers and female non-high flyer link senders. The regressions reported in
all columns include cohort dummies, whether the student was born in the US, their PVT score, whether their PVT score
is above the population median PVT score, whether their mother’s and father’s highest degree is high school, some college,
college, or post college, whether their mother’s and father’s highest education level is missing, the student’s log family income,
whether family is missing, the age of the student during Wave I, whether the student’s mother and father were in the household,
dummies for whether the student is black, hispanic, white, asian and indian. Standard errors are estimated with subsample
bootstrapping with 900 subsamples drawn randomly. At each bootstrap, 90% of the individuals (nodes) within each school are
sampled without replacement. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 21: Effect of friendship on long-term outcomes

LFP Num Children Married

(1) (2) (3)

F FL 0.002 0.003 0.007∗∗∗

(0.002) (0.005) (0.002)

F ML 0.001 −0.031∗∗∗ −0.001
(0.004) (0.008) (0.004)

F FH −0.016 −0.081∗∗∗ 0.046∗∗∗

(0.012) (0.031) (0.012)

F MH 0.024 −0.064∗∗∗ 0.006
(0.015) (0.018) (0.010)

M FL 0.010∗∗∗ 0.004 0.009∗∗∗

(0.003) (0.008) (0.003)

M ML 0.003 −0.003 −0.003
(0.003) (0.006) (0.003)

M FH −0.055∗∗ 0.024 −0.015
(0.024) (0.031) (0.016)

M MH −0.034∗∗ −0.057∗∗∗ 0.025∗

(0.013) (0.021) (0.013)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Note: This table reports the estimated effects of high school friendship on students’ long term outcomes measured in Wave

IV. The dependent variable in Column (1) is a dummy variable recording whether the respondent was part of the labour force.
The dependent variable in Column (2) is the number of children the respondent. The dependent variable in Column (3) is a
dummy variable recording whether the respondent has ever been married. The estimands are all ATT. Each row corresponds
to a characterisation of the friendship, based on the character of the receiver and the sender. Receiver characteristics is shown
before the underbar , and sender characteristics is shown after. “F” and “M” are used to refer to the gender female and male
respectively. “H” and “L” are used to refer to whether the individual is a high flyer or non-high flyer (low flyer) respectively.
For example, “F FL” means the linking effect is estimated for female link receivers and female non-high flyer link senders. The
regressions reported in all columns include cohort dummies, whether the student was born in the US, their PVT score, whether
their PVT score is above the population median PVT score, whether their mother’s and father’s highest degree is high school,
some college, college, or post college, whether their mother’s and father’s highest education level is missing, the student’s log
family income, whether family is missing, the age of the student during Wave I, whether the student’s mother and father were
in the household, dummies for whether the student is black, hispanic, white, asian and indian. Standard errors are estimated
with subsample bootstrapping with 900 subsamples drawn randomly. At each bootstrap, 90% of the individuals (nodes) within
each school are sampled without replacement. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 22: Heterogeneous effects of friendship on desire and likelihood to go to college

Dependent variable:

Want Will

PVT Median - PVT Median + PVT Median - PVT Median +

(1) (2) (3) (4)

F FL −2.100∗∗∗ 0.603 −1.256∗∗∗ −0.328
(0.508) (0.385) (0.350) (0.407)

F ML 0.216 −0.462 −1.396∗ 0.091
(0.798) (0.876) (0.774) (0.697)

F FH 5.494∗∗∗ −0.387 2.600 −0.410
(2.089) (1.708) (3.457) (1.584)

F MH 4.506∗ −0.722 5.365∗∗∗ −0.441
(2.393) (1.548) (1.816) (1.260)

M FL 0.153 −0.893∗ 0.394 −0.890∗

(0.767) (0.496) (0.746) (0.522)

M ML 1.010∗∗ −0.525 −0.352 −0.884∗∗

(0.436) (0.437) (0.480) (0.436)

M FH 1.805 0.648 −5.984∗∗ 0.746
(2.537) (1.928) (2.426) (2.587)

M MH −4.820∗∗ 10.053∗∗∗ −3.905 9.147∗∗∗

(2.295) (2.411) (2.912) (2.593)

Note: This table reports the estimated heterogeneous effects of high school friendship on students’ desire and likelihood of
going to college. The dependent variable in Column (1) and Column (2) is a dummy variable recording whether the student
reported a scale 5 (1 is the lowest and 5 is the highest) on the the extent of how much they want to go to college (Wave II).
The dependent variable in Column (3) and Column (4) is a dummy variable recording whether the student reported a scale
5 (1 is the lowest and 5 is the highest) on the likelihood that they will go to college (Wave II). Column (1) and (3) reports
results for ego whose PVT score is below population median PVT score. Column (2) and (4) reports results for ego whose
PVT score is above population median PVT score. The estimands are all ATT. Each row corresponds to a characterisation of
the friendship, based on the character of the receiver and the sender. Receiver characteristics is shown before the underbar ,
and sender characteristics is shown after. “F” and “M” are used to refer to the gender female and male respectively. “H” and
“L” are used to refer to whether the individual is a high flyer or non-high flyer (low flyer) respectively. For example, “F FL”
means the linking effect is estimated for female link receivers and female non-high flyer link senders. The regressions reported
in all columns include cohort dummies, whether the student was born in the US, their PVT score, whether their PVT score
is above the population median PVT score, whether their mother’s and father’s highest degree is high school, some college,
college, or post college, whether their mother’s and father’s highest education level is missing, the student’s log family income,
whether family is missing, the age of the student during Wave I, whether the student’s mother and father were in the household,
dummies for whether the student is black, hispanic, white, asian and indian. Standard errors are estimated with subsample
bootstrapping with 900 subsamples drawn randomly. At each bootstrap, 90% of the individuals (nodes) within each school are
sampled without replacement. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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